Department of Computer Science, Physical Sciences, The University of Chicago, Chicago, IL 60637.
Toyota Technical Institute of Chicago, Chicago, IL 60637.
Proc Natl Acad Sci U S A. 2023 Jun 6;120(23):e2216438120. doi: 10.1073/pnas.2216438120. Epub 2023 May 30.
Protein side-chain packing (PSCP), the task of determining amino acid side-chain conformations given only backbone atom positions, has important applications to protein structure prediction, refinement, and design. Many methods have been proposed to tackle this problem, but their speed or accuracy is still unsatisfactory. To address this, we present AttnPacker, a deep learning (DL) method for directly predicting protein side-chain coordinates. Unlike existing methods, AttnPacker directly incorporates backbone 3D geometry to simultaneously compute all side-chain coordinates without delegating to a discrete rotamer library or performing expensive conformational search and sampling steps. This enables a significant increase in computational efficiency, decreasing inference time by over 100× compared to the DL-based method DLPacker and physics-based RosettaPacker. Tested on the CASP13 and CASP14 native and nonnative protein backbones, AttnPacker computes physically realistic side-chain conformations, reducing steric clashes and improving both rmsd and dihedral accuracy compared to state-of-the-art methods SCWRL4, FASPR, RosettaPacker, and DLPacker. Different from traditional PSCP approaches, AttnPacker can also codesign sequences and side chains, producing designs with subnative Rosetta energy and high in silico consistency.
蛋白质侧链堆积(PSCP)是一个仅给定骨架原子位置就确定氨基酸侧链构象的任务,它在蛋白质结构预测、精修和设计方面有重要的应用。已经提出了许多方法来解决这个问题,但它们的速度或准确性仍然不尽如人意。为了解决这个问题,我们提出了 AttnPacker,这是一种用于直接预测蛋白质侧链坐标的深度学习(DL)方法。与现有的方法不同,AttnPacker 直接结合了骨架 3D 几何形状,同时计算所有的侧链坐标,而无需委托给离散的构象库,也无需进行昂贵的构象搜索和采样步骤。这使得计算效率显著提高,与基于 DL 的方法 DLPacker 和基于物理的 RosettaPacker 相比,推理时间减少了 100 多倍。在 CASP13 和 CASP14 天然和非天然蛋白质骨架上进行测试,AttnPacker 计算出物理上合理的侧链构象,与最先进的方法 SCWRL4、FASPR、RosettaPacker 和 DLPacker 相比,减少了空间冲突,提高了 rmsd 和二面角的准确性。与传统的 PSCP 方法不同,AttnPacker 还可以对序列和侧链进行协同设计,生成具有亚天然 Rosetta 能量和高计算一致性的设计。