Suppr超能文献

NaOH 刻蚀的三维打印聚己内酯支架在灌注或旋转瓶生物反应器中的成骨活性。

Osteogenic Activity on NaOH-Etched Three-Dimensional-Printed Poly-ɛ-Caprolactone Scaffolds in Perfusion or Spinner Flask Bioreactor.

机构信息

Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.

School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.

出版信息

Tissue Eng Part C Methods. 2023 Jun;29(6):230-241. doi: 10.1089/ten.tec.2023.0062. Epub 2023 May 30.

Abstract

Bioreactor systems, for example, spinner flask and perfusion bioreactors, and cell-seeded three-dimensional (3D)-printed scaffolds are used in bone tissue engineering strategies to stimulate cells and produce bone tissue suitable for implantation into the patient. The construction of functional and clinically relevant bone graft using cell-seeded 3D-printed scaffolds within bioreactor systems is still a challenge. Bioreactor parameters, for example, fluid shear stress and nutrient transport, will crucially affect cell function on 3D-printed scaffolds. Therefore, fluid shear stress induced by spinner flask and perfusion bioreactors might differentially affect osteogenic responsiveness of pre-osteoblasts inside 3D-printed scaffolds. We designed and fabricated surface-modified 3D-printed poly-ɛ-caprolactone (PCL) scaffolds, as well as static, spinner flask, and perfusion bioreactors to determine fluid shear stress and osteogenic responsiveness of MC3T3-E1 pre-osteoblasts seeded on the scaffolds in the bioreactors using finite element (FE)-modeling and experiments. FE-modeling was used to quantify wall shear stress (WSS) distribution and magnitude inside 3D-printed PCL scaffolds within spinner flask and perfusion bioreactors. MC3T3-E1 pre-osteoblasts were seeded on NaOH surface-modified 3D-printed PCL scaffolds, and cultured in customized static, spinner flask, and perfusion bioreactors up to 7 days. The scaffolds' physicochemical properties and pre-osteoblast function were assessed experimentally. FE-modeling showed that spinner flask and perfusion bioreactors locally affected WSS distribution and magnitude inside the scaffolds. The WSS distribution was more homogeneous inside scaffolds in perfusion than in spinner flask bioreactors. The average WSS on scaffold-strand surfaces ranged from 0 to 6.5 mPa for spinner flask bioreactors, and from 0 to 4.1 mPa for perfusion bioreactors. Surface modification of scaffolds by NaOH resulted in a surface with a honeycomb-like pattern and increased surface roughness (1.6-fold), but decreased water contact angle (0.3-fold). Both spinner flask and perfusion bioreactors increased cell spreading, proliferation, and distribution throughout the scaffolds. Perfusion, but not spinner flask bioreactors more strongly enhanced collagen (2.2-fold) and calcium deposition (2.1-fold) throughout the scaffolds after 7 days compared with static bioreactors, likely due to uniform WSS-induced mechanical stimulation of the cells revealed by FE-modeling. In conclusion, our findings indicate the importance of using accurate FE models to estimate WSS and determine experimental conditions for designing cell-seeded 3D-printed scaffolds in bioreactor systems. Impact Statement The success of cell-seeded three-dimensional (3D)-printed scaffolds depends on cell stimulation by biomechanical/biochemical factors to produce bone tissue suitable for implantation into the patient. We designed and fabricated surface-modified 3D-printed poly-ɛ-caprolactone (PCL) scaffolds, as well as static, spinner flask, and perfusion bioreactors to determine wall shear stress (WSS) and osteogenic responsiveness of pre-osteoblasts seeded on the scaffolds using finite element (FE)-modeling and experiments. We found that cell-seeded 3D-printed PCL scaffolds within perfusion bioreactors more strongly enhanced osteogenic activity than within spinner flask bioreactors. Our results indicate the importance of using accurate FE-models to estimate WSS and determine experimental conditions for designing cell-seeded 3D-printed scaffolds in bioreactor systems.

摘要

生物反应器系统,例如旋转瓶和灌注生物反应器,以及细胞接种的三维(3D)打印支架,用于骨组织工程策略中,以刺激细胞并产生适合植入患者的骨组织。使用细胞接种的 3D 打印支架在生物反应器系统中构建具有功能和临床相关的骨移植物仍然是一个挑战。生物反应器参数,例如流体切应力和营养物质传输,将极大地影响 3D 打印支架上细胞的功能。因此,旋转瓶和灌注生物反应器产生的流体切应力可能会对 3D 打印支架内的成骨前体细胞的成骨反应产生不同的影响。我们设计并制造了表面改性的 3D 打印聚己内酯(PCL)支架,以及静态、旋转瓶和灌注生物反应器,以使用有限元(FE)建模和实验来确定在生物反应器中接种在支架上的 MC3T3-E1 成骨前体细胞的流体切应力和成骨反应。FE 建模用于量化旋转瓶和灌注生物反应器中 3D 打印 PCL 支架内的壁面剪切应力(WSS)分布和大小。将 MC3T3-E1 成骨前体细胞接种在 NaOH 表面改性的 3D 打印 PCL 支架上,并在定制的静态、旋转瓶和灌注生物反应器中培养至 7 天。通过实验评估支架的物理化学性质和成骨前体细胞的功能。FE 建模表明,旋转瓶和灌注生物反应器局部影响支架内的 WSS 分布和大小。与旋转瓶生物反应器相比,灌注生物反应器中的 WSS 分布更均匀。旋转瓶生物反应器中支架丝表面的平均 WSS 范围为 0 至 6.5 mPa,而灌注生物反应器中的平均 WSS 范围为 0 至 4.1 mPa。支架表面经 NaOH 处理后,表面呈蜂窝状图案,表面粗糙度增加(1.6 倍),但水接触角减小(0.3 倍)。旋转瓶和灌注生物反应器都增加了细胞在支架中的铺展、增殖和分布。与静态生物反应器相比,灌注生物反应器而不是旋转瓶生物反应器在 7 天后更强烈地增强了整个支架中的胶原蛋白(2.2 倍)和钙沉积(2.1 倍),这可能是由于 FE 建模显示均匀的 WSS 诱导的细胞机械刺激所致。总之,我们的研究结果表明,使用准确的 FE 模型来估计 WSS 并确定设计生物反应器系统中细胞接种的 3D 打印支架的实验条件非常重要。

影响说明

细胞接种的三维(3D)打印支架的成功取决于细胞刺激的生物力学/生化因素,以产生适合植入患者的骨组织。我们设计并制造了表面改性的 3D 打印聚己内酯(PCL)支架,以及静态、旋转瓶和灌注生物反应器,以使用有限元(FE)建模和实验来确定接种在支架上的成骨前体细胞的壁面剪切应力(WSS)和成骨反应。我们发现,与旋转瓶生物反应器相比,灌注生物反应器中的细胞接种 3D 打印 PCL 支架更强烈地增强了成骨活性。我们的结果表明,使用准确的 FE 模型来估计 WSS 并确定设计生物反应器系统中细胞接种的 3D 打印支架的实验条件非常重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验