Suppr超能文献

用于甘油光重整制氢和增值化学品联产的氧化镍在二氧化钛纳米片上的 p-n 异质结。

p-n heterojunction of nickel oxide on titanium dioxide nanosheets for hydrogen and value-added chemicals coproduction from glycerol photoreforming.

机构信息

Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada.

Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada.

出版信息

J Colloid Interface Sci. 2023 Oct;647:255-263. doi: 10.1016/j.jcis.2023.05.138. Epub 2023 May 22.

Abstract

Selective photocatalysis to simultaneously produce sustainable hydrogen and value-added chemicals from biomass or biomass derivates is attracting extensive investigations. However, the lack of bifunctional photocatalyst greatly limits the possibility to realize the "one stone kills two birds" scenario. Herein, anatase titanium dioxide (TiO) nanosheets are rationally designed as the n-type semiconductor, combining with nickel oxide (NiO) nanoparticles, the p-type semiconductor, resulting in the formation of a p-n heterojunction structure. The shorten charge transfer path and the spontaneous formation of p-n heterojunction endow the photocatalyst with efficient spatial separation of photogenerated electrons and holes. As a result, TiO accumulates electrons for efficient hydrogen generation while NiO collects holes to selectively oxidize glycerol into value-added chemicals. The results showed that by loading 5% nickel into the heterojunction caused a remarkable rise in the generation of hydrogen (H). The combination of NiO-TiO created 4000 µmolhg of H, which is 50% greater than the H production from pure nanosheet TiO and 63 times more than the H production from commercial nanopowder TiO. Then, by changing loading amount of Ni, it is found that when 7.5 % of Ni is loaded the highest amount of hydrogen production achieved, 8000 µmolhg. By employing best sample (S3), 20 % of glycerol converted to value added products, glyceraldehyde and dihydroxyacetone. The feasibility study revealed that glyceraldehyde generates the largest portion of yearly earnings at 89%, while dihydroxyacetone and H account for 11% and 0.03% of the annual revenue, respectively. This work provides a good example to simultaneously produce green hydrogen and valuable chemicals with the rational design of dually functional photocatalyst.

摘要

从生物质或生物质衍生物中选择性地光催化同时生产可持续的氢气和增值化学品,引起了广泛的研究。然而,缺乏双功能光催化剂极大地限制了实现“一石二鸟”情景的可能性。在此,锐钛矿二氧化钛 (TiO) 纳米片被合理设计为 n 型半导体,与 p 型半导体氧化镍 (NiO) 纳米颗粒结合,形成 p-n 异质结结构。缩短的电荷转移路径和 p-n 异质结的自发形成赋予了光催化剂有效的光生电子和空穴空间分离。结果,TiO 积累电子以高效地产生氢气,而 NiO 收集空穴以选择性地将甘油氧化成增值化学品。结果表明,通过在异质结中负载 5%的镍,可以显著提高氢气的生成量(H)。NiO-TiO 的结合产生了 4000 µmolhg 的 H,比纯纳米片 TiO 的 H 产量增加了 50%,比商业纳米粉 TiO 的 H 产量增加了 63 倍。然后,通过改变镍的负载量,发现当负载 7.5%的镍时,达到了最高的产氢量,为 8000 µmolhg。使用最佳样品(S3),20%的甘油转化为增值产品,甘油醛和二羟丙酮。可行性研究表明,甘油醛产生的年收入最大,为 89%,而二羟丙酮和 H 分别占年收入的 11%和 0.03%。这项工作为通过合理设计双功能光催化剂同时生产绿色氢气和有价值的化学品提供了一个很好的范例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验