School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China.
Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
ACS Appl Mater Interfaces. 2023 Jun 14;15(23):28806-28816. doi: 10.1021/acsami.3c03629. Epub 2023 May 30.
Highly sensitive, multifunctional, and comfortable fabric sensors with splendid electrical properties for precise detection of human physiological health parameters have attractive prospects in next-generation wearable flexible devices. However, it remains a non-ignorable challenge to construct a multifunctional fabric sensor to meet the requirements of compact structure, high sensitivity, fast response, excellent stability, and air permeability. Here, a wool felt@MXene fabric sensor (WF@MFS) prepared by felting large quantities of wool coated with MXene is reported for measuring multiple physiological parameters in a noninvasive manner. With the high conductivity and outstanding mechanical properties of MXene and the special scale-like surface structure of the wool fiber, the sensor exhibits remarkable sensing performance such as high pressure sensitivity (80.79 kPa), fast response (40 ms), low detection limit (12 Pa), and strong stability (>12,500 cycles). Furthermore, to avoid direct contact between MXene and the human body, the WF@MFS is encapsulated in pure wool without MXene, thereby enabling the fabricated sensor to be tightly integrated into a variety of clothing for monitoring different physiological signals and information about human activities. More importantly, we develop an intelligent cushion with a square and panda pattern and an intelligent neckerchief in the form of arrays based on the WF@MFS, which can intuitively observe the real-time force distribution of the thigh and cervical spine by means of machine learning when a human body sits in different postures. The sensor proposed in this work demonstrates the great ability to prevent cardiovascular disease and the related diseases caused by improper sitting postures in advance, paving a promising path for future wearable smart fabric electronics.
具有出色电性能的高灵敏度、多功能和舒适的织物传感器,可精确检测人体生理健康参数,在下一代可穿戴柔性设备中具有诱人的前景。然而,构建满足紧凑结构、高灵敏度、快速响应、优异稳定性和透气性要求的多功能织物传感器仍然是一个不可忽视的挑战。在这里,报道了一种通过大量涂覆 MXene 的羊毛毡制备的羊毛毡@MXene 织物传感器 (WF@MFS),用于无创测量多种生理参数。由于 MXene 的高导电性和出色的机械性能以及羊毛纤维的特殊鳞片表面结构,传感器表现出卓越的传感性能,如高压力灵敏度 (80.79 kPa)、快速响应 (40 ms)、低检测限 (12 Pa) 和强稳定性 (>12,500 次循环)。此外,为避免 MXene 与人体直接接触,将 WF@MFS 封装在不含 MXene 的纯羊毛中,从而使制造的传感器能够紧密集成到各种服装中,以监测不同的生理信号和人体活动信息。更重要的是,我们基于 WF@MFS 开发了一种具有方形和熊猫图案的智能坐垫和一种呈阵列形式的智能围巾,当人体处于不同姿势时,通过机器学习可以直观地观察到大腿和颈椎的实时力分布。这项工作中提出的传感器具有提前预防心血管疾病和因不当坐姿引起的相关疾病的巨大能力,为未来的可穿戴智能织物电子铺平了道路。