Institute for Experimental and Applied Physics, University of Regensburg, D-93040 Regensburg, Germany.
Nano Lett. 2023 Jun 14;23(11):4815-4821. doi: 10.1021/acs.nanolett.3c00369. Epub 2023 May 31.
Electrically controlled rotation of spins in a semiconducting channel is a prerequisite for the successful realization of many spintronic devices, like, e.g., the spin-field-effect transistor (sFET). To date, there have been only a few reports on electrically controlled spin precession in sFET-like devices. These devices operate in the ballistic regime, as postulated in the original sFET proposal, and hence need high SOC channel materials in practice. Here, we demonstrate gate-controlled precession of spins in a nonballistic sFET using an array of narrow diffusive wires as a channel between a spin source and a spin drain. Our study shows that spins traveling in a semiconducting channel can be coherently rotated on a distance far exceeding the electrons' mean free path, and spin-transistor functionality can be thus achieved in nonballistic channels with relatively low SOC, relaxing two major constraints of the original sFET proposal.
在半导体通道中控制自旋的旋转是许多自旋电子器件成功实现的前提,例如自旋场效应晶体管(sFET)。迄今为止,只有少数关于 sFET 类器件中电控制制自旋进动的报道。这些器件在弹道模式下工作,正如原始 sFET 提案中所假设的那样,因此在实际中需要高 SOC 沟道材料。在这里,我们使用自旋源和自旋漏极之间的窄扩散线阵列作为沟道,演示了非弹道 sFET 中的门控自旋进动。我们的研究表明,在半导体通道中传输的自旋可以在远远超过电子平均自由程的距离上进行相干旋转,因此可以在具有相对较低 SOC 的非弹道通道中实现自旋晶体管功能,从而放宽了原始 sFET 提案的两个主要限制。