Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
Gastroenterology. 2023 Sep;165(3):613-628.e20. doi: 10.1053/j.gastro.2023.05.030. Epub 2023 May 29.
BACKGROUND & AIMS: Despite recent progress in identifying aberrant genetic and epigenetic alterations in esophageal squamous cell carcinoma (ESCC), the mechanism of ESCC initiation remains unknown.
Using CRISPR/Cas 9-based genetic ablation, we targeted 9 genes (TP53, CDKN2A, NOTCH1, NOTCH3, KMT2D, KMT2C, FAT1, FAT4, and AJUBA) in murine esophageal organoids. Transcriptomic phenotypes of organoids and chemokine released by organoids were analyzed by single-cell RNA sequencing. Tumorigenicity and immune evasion of organoids were monitored by allograft transplantation. Human ESCC single-cell RNA sequencing data sets were analyzed to classify patients and find subsets relevant to organoid models and immune evasion.
We established 32 genetically engineered esophageal organoids and identified key genetic determinants that drive ESCC initiation. A single-cell transcriptomic analysis uncovered that Trp53, Cdkn2a, and Notch1 (PCN) triple-knockout induces neoplastic features of ESCC by generating cell lineage heterogeneity and high cell plasticity. PCN knockout also generates an immunosuppressive niche enriched with exhausted T cells and M2 macrophages via the CCL2-CCR2 axis. Mechanistically, CDKN2A inactivation transactivates CCL2 via nuclear factor-κB. Moreover, comparative single-cell transcriptomic analyses stratified patients with ESCC and identified a specific subtype recapitulating the PCN-type ESCC signatures, including the high expression of CCL2 and CD274/PD-L1.
Our study unveils that loss of TP53, CDKN2A, and NOTCH1 induces esophageal neoplasia and immune evasion for ESCC initiation and proposes the CCL2 blockade as a viable option for targeting PCN-type ESCC.
尽管近年来在识别食管鳞状细胞癌(ESCC)中异常的遗传和表观遗传改变方面取得了进展,但 ESCC 的发病机制仍不清楚。
我们使用基于 CRISPR/Cas9 的基因敲除技术,靶向了 9 个基因(TP53、CDKN2A、NOTCH1、NOTCH3、KMT2D、KMT2C、FAT1、FAT4 和 AJUBA)在小鼠食管类器官中。通过单细胞 RNA 测序分析类器官的转录组表型和类器官释放的趋化因子。通过同种异体移植监测类器官的致瘤性和免疫逃逸。分析人类 ESCC 单细胞 RNA 测序数据集,对患者进行分类,并找到与类器官模型和免疫逃逸相关的亚群。
我们建立了 32 个基因工程化的食管类器官,并确定了驱动 ESCC 发生的关键遗传决定因素。单细胞转录组分析表明,Trp53、Cdkn2a 和 Notch1(PCN)三重敲除通过产生细胞谱系异质性和高细胞可塑性,诱导 ESCC 的肿瘤特征。PCN 敲除还通过 CCL2-CCR2 轴产生富含耗竭 T 细胞和 M2 巨噬细胞的免疫抑制微环境。在机制上,CDKN2A 失活通过核因子-κB 转激活 CCL2。此外,比较单细胞转录组分析将 ESCC 患者分层,并鉴定出一种特定的亚型,该亚型再现了 PCN 型 ESCC 特征,包括 CCL2 和 CD274/PD-L1 的高表达。
我们的研究揭示了 TP53、CDKN2A 和 NOTCH1 的缺失诱导食管肿瘤发生和免疫逃逸,为 ESCC 的发生和提出 CCL2 阻断作为靶向 PCN 型 ESCC 的可行选择奠定了基础。