Garín M, Pasanen T P, López G, Vähänissi V, Chen K, Martín I, Savin H
Universitat Politècnica de Catalunya, Carrer del Gran Capità, Barcelona, 08034, Spain.
Department of Engineering, Universitat de Vic-Universitat Central de Catalunya, Carrer de la Laura 13, Vic, 08500, Spain.
Small. 2023 Sep;19(39):e2302250. doi: 10.1002/smll.202302250. Epub 2023 May 31.
Cutting costs by progressively decreasing substrate thickness is a common theme in the crystalline silicon photovoltaic industry for the last decades, since drastically thinner wafers would significantly reduce the substrate-related costs. In addition to the technological challenges concerning wafering and handling of razor-thin flexible wafers, a major bottleneck is to maintain high absorption in those thin wafers. For the latter, advanced light-trapping techniques become of paramount importance. Here we demonstrate that by applying state-of-the-art black-Si nanotexture produced by DRIE on thin uncommitted wafers, the maximum theoretical absorption (Yablonovitch's 4n absorption limit), that is, ideal light trapping, is reached with wafer thicknesses as low as 40, 20, and 10 µm when paired with a back reflector. Due to the achieved promising optical properties the results are implemented into an actual thin interdigitated back contacted solar cell. The proof-of-concept cell, encapsulated in glass, achieved a 16.4% efficiency with an J = 35 mA cm , representing a 43% improvement in output power with respect to the reference polished cell. These results demonstrate the vast potential of black silicon nanotexture in future extremely-thin silicon photovoltaics.
在过去几十年里,逐步降低衬底厚度以削减成本一直是晶体硅光伏产业的一个共同主题,因为大幅减薄的晶圆将显著降低与衬底相关的成本。除了在切割和处理超薄柔性晶圆方面存在技术挑战外,一个主要瓶颈是要在这些薄晶圆中保持高吸收率。对于后者,先进的光捕获技术变得至关重要。在此,我们证明,通过在未使用的薄晶圆上应用由深反应离子刻蚀(DRIE)产生的最先进的黑硅纳米纹理,当与背反射器配对时,在低至40、20和10微米的晶圆厚度下即可达到最大理论吸收率(雅布隆诺维奇的4n吸收率极限),即理想的光捕获效果。由于实现了令人满意的光学性能,这些成果被应用于实际的薄叉指背接触太阳能电池中。封装在玻璃中的概念验证电池实现了16.4%的效率,J = 35 mA cm ,相对于参考抛光电池,输出功率提高了43%。这些结果证明了黑硅纳米纹理在未来极薄硅光伏领域的巨大潜力。