Luminescent Materials Laboratory, DB, University of Verona, and INSTM, UdR Verona, Strada Le Grazie 15, 37134 Verona, Italy.
Department of Chemistry, Life Sciences and Environmental Sustainability, Parma University, Parco Area delle Scienze, 17/a, 43124 Parma, Italy.
Inorg Chem. 2023 Jun 12;62(23):8812-8822. doi: 10.1021/acs.inorgchem.3c00196. Epub 2023 Jun 1.
The complexes [Eu(bpcd)(tta)], [Eu(bpcd)(Coum)], and [Tb(bpcd)(Coum)] [tta = 2-thenoyltrifluoroacetyl-acetonate, Coum = 3-acetyl-4-hydroxy-coumarin, and bpcd = ,'-bis(2-pyridylmethyl)--1,2-diaminocyclohexane-,'-diacetate] have been synthesized and characterized from photophysical and thermodynamic points of view. The optical and chiroptical properties of these complexes, such as the total luminescence, decay curves of the Ln(III) luminescence, electronic circular dichroism, and circularly polarized luminescence, have been investigated. Interestingly, the number of coordinated solvent (methanol) molecules is sensitive to the nature of the metal ion. This number, estimated by spectroscopy, is >1 for Eu(III)-based complexes and <1 for Tb(III)-based complexes. A possible explanation for this behavior is provided via the study of the minimum energy structure obtained by density functional theory (DFT) calculations on the model complexes of the diamagnetic Y(III) and La(III) counterparts [Y(bpcd)(tta)], [Y(bpcd)(Coum)], and [La(bpcd)(Coum)]. By time-dependent DFT calculations, estimation of donor-acceptor (D-A) distances and of the energy position of the S and T ligand excited states involved in the effect was possible. These data are useful for rationalizing the different sensitization efficiencies (η) of the toward Eu(III) and Tb(III). The tta ligand is an optimal for sensitizing Eu(III) luminescence, while the Coum ligand sensitizes better Tb(III) luminescence {ϕ = 55%; η ≥ 55% for the [Tb(bpcd)(Coum)] complex}. Finally, for the [Eu(bpcd)(tta)] complex, a sizable value of (0.26) and a good quantum yield (26%) were measured.
从光物理和热力学的角度合成并表征了配合物[Eu(bpcd)(tta)]、[Eu(bpcd)(Coum)]和[Tb(bpcd)(Coum)](tta=2-噻吩甲酰三氟丙酮乙酰基-乙酰丙酮,Coum=3-乙酰基-4-羟基香豆素,bpcd=,'-双(2-吡啶基甲基)--1,2-二氨基环己烷-,'-二乙酸酯]。研究了这些配合物的光学和手性光学性质,如总发光、Ln(III)发光的衰减曲线、电子圆二色性和圆偏振发光。有趣的是,配位溶剂(甲醇)分子的数量对金属离子的性质敏感。通过光谱法估计,基于 Eu(III)的配合物的数量>1,而基于 Tb(III)的配合物的数量<1。通过对模型配合物的密度泛函理论(DFT)计算,提供了对这种行为的可能解释,该模型配合物为无磁性的 Y(III)和 La(III)对应物[Y(bpcd)(tta)]、[Y(bpcd)(Coum)]和[La(bpcd)(Coum)]。通过时间相关的 DFT 计算,估计了 D-A 距离和参与效应的 S 和 T 配体激发态的能量位置。这些数据对于合理化不同的敏化效率(η)是有用的(D-A)距离和参与效应的 S 和 T 配体激发态的能量位置。这些数据对于合理化不同的敏化效率(η)是有用的[Eu(bpcd)(tta)]和[Tb(bpcd)(Coum)]。tta 配体是敏化 Eu(III)发光的最佳配体,而 Coum 配体更好地敏化 Tb(III)发光{ϕ=55%;对于[Tb(bpcd)(Coum)]配合物,η≥55%}。最后,对于[Eu(bpcd)(tta)]配合物,测量到了相当大的(0.26)和良好的量子产率(26%)。