Suppr超能文献

用于改良 Rankin 量表等级分析的功效分析及实用在线下载工具

Power Analysis for Ordinal Analyses of the Modified Rankin Scale and an Online and Downloadable Tool for Practical Use.

机构信息

Melbourne Medical School, University of Melbourne, Victoria, Australia (H.J., L.C.).

Australian Stroke Alliance, Melbourne Brain Centre, Royal Melbourne Hospital, Victoria, Australia (H.J., B.C., L.C.).

出版信息

Stroke. 2023 Jul;54(7):1750-1760. doi: 10.1161/STROKEAHA.122.041260. Epub 2023 Jun 2.

Abstract

BACKGROUND

Several methods for conducting power analysis of studies with outcomes across the full ordinal modified Rankin Scale are proposed in the literature. No systematic comparison of accuracy, agreement, and sensitivity to small changes in hypothesized effect sizes for these methods is available. Our aim is to conduct such a systematic comparative analysis and to introduce a comprehensive freely available online tool to facilitate appropriate power analyses for ordinal outcomes.

METHODS

We performed simulation studies utilizing the control arm modified Rankin Scale distributions from the AVERT (A Very Early Rehabilitation Trial), EXTEND (Extending the Time for Thrombolysis in Emergency Neurological Deficits), and HERMES (Highly Effective Reperfusion Evaluated in Multiple Endovascular Stroke Trials) studies, as well as a uniform distribution, in combination with hypothetical treatment effects. We systematically evaluated published power formulas for Ordinal Logistic Regression and Tournament Methods (generalized odds ratio; Win Probability; Win Ratio; and Wilcoxon-Mann-Whitney test). We also developed an online and downloadable Shiny R app facilitating sample size calculation for, and ordinal analysis of, modified Rankin Scale data.

RESULTS

Power formulas for Tournament Methods performed well, while the formula for ordinal logistic regression was inaccurate. Tang's Wilcoxon-Mann-Whitney test sample size formula exhibited the highest accuracy. All methods, including ordinal logistic regression, had almost identical empirical power for a given sample size. All power methods exhibited sensitivity to small changes in hypothesized effect size. The developed freely available online app supports analytical and visualization requirements for all investigated methods for power and statistical analyses of ordinal modified Rankin Scale outcomes.

CONCLUSIONS

As Tournament Method sample size formulas are assumption-free and accurately calculate power, stroke researchers should use these methods when designing studies with outcomes measured on the full or partially collapsed modified Rankin Scale as well as other ordinal scales, even if they intend to use ordinal logistic regression for analysis. Conducting sensitivity analyses of the effect size assumptions are essential for appropriate sample size estimation. Our developed tool supports both of these recommendations (https://www.thembc.com.au/tournamentmethods).

摘要

背景

文献中提出了几种用于分析全序改良 Rankin 量表(mRS)结局的研究的效能分析方法。目前尚无这些方法在假设效果大小的准确性、一致性和对小变化的敏感性方面的系统比较。我们的目的是进行这样的系统比较分析,并引入一个全面的免费在线工具,以方便对有序结局进行适当的效能分析。

方法

我们利用 AVERT(早期康复试验)、EXTEND(在紧急神经功能缺损中延长溶栓时间)和 HERMES(在多个血管内卒中介入试验中进行的高有效再灌注评估)研究的对照臂 mRS 分布,以及均匀分布,与假设的治疗效果相结合,进行了模拟研究。我们系统地评估了已发表的用于有序逻辑回归和锦标赛方法的效能公式(广义优势比;赢的概率;赢的比率;Wilcoxon-Mann-Whitney 检验)。我们还开发了一个在线的和可下载的 Shiny R 应用程序,方便计算 mRS 数据的样本量,并对其进行有序分析。

结果

锦标赛方法的效能公式表现良好,而有序逻辑回归的公式则不准确。Tang 的 Wilcoxon-Mann-Whitney 检验样本量公式具有最高的准确性。对于给定的样本量,所有方法(包括有序逻辑回归)的实际效能几乎相同。所有效能方法都对假设的效果大小的小变化敏感。所开发的免费在线应用程序支持所有调查方法的分析和可视化要求,用于对全序或部分折叠的 mRS 以及其他有序量表的结局进行效能和统计分析。

结论

由于锦标赛方法的样本量公式是无假设的,并且能够准确地计算效能,因此卒中研究人员在设计使用全序或部分折叠的 mRS 以及其他有序量表作为结局的研究时,应该使用这些方法,即使他们打算使用有序逻辑回归进行分析。对效果大小假设进行敏感性分析对于适当的样本量估计至关重要。我们开发的工具支持这两个建议(https://www.thembc.com.au/tournamentmethods)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验