Division of Neonatology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, USA.
Mildred Stahlman Division of Neonatology, Department of Pediatrics, Monroe Carrell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Pediatr Pulmonol. 2023 Aug;58(8):2323-2332. doi: 10.1002/ppul.26488. Epub 2023 Jun 2.
Evidence-based ventilation strategies for infants with severe bronchopulmonary dysplasia (BPD) remain unknown. Determining whether contemporary ventilation approaches cluster as specific BPD strategies may better characterize care and enhance the design of clinical trials. The objective of this study was to test the hypothesis that unsupervised, multifactorial clustering analysis of point prevalence ventilator setting data would classify a discrete number of physiology-based approaches to mechanical ventilation in a multicenter cohort of infants with severe BPD.
We performed a secondary analysis of a multicenter point prevalence study of infants with severe BPD treated with invasive mechanical ventilation. We clustered the cohort by mean airway pressure (MAP), positive end expiratory pressure (PEEP), set respiratory rate, and inspiratory time (Ti) using Ward's hierarchical clustering analysis (HCA).
Seventy-eight patients with severe BPD were included from 14 centers. HCA classified three discrete clusters as determined by an agglomerative coefficient of 0.97. Cluster stability was relatively strong as determined by Jaccard coefficient means of 0.79, 0.85, and 0.77 for clusters 1, 2, and 3, respectively. The median PEEP, MAP, rate, Ti, and PIP differed significantly between clusters for each comparison by Kruskall-Wallis testing (p < 0.0001).
In this study, unsupervised clustering analysis of ventilator setting data identified three discrete approaches to mechanical ventilation in a multicenter cohort of infants with severe BPD. Prospective trials are needed to determine whether these approaches to mechanical ventilation are associated with specific severe BPD clinical phenotypes and differentially modify respiratory outcomes.
针对严重支气管肺发育不良(BPD)婴儿的循证通气策略仍不明确。确定当代通气方法是否聚类为特定的 BPD 策略,可能会更好地描述治疗方法并增强临床试验的设计。本研究的目的是检验以下假设,即通过对机械通气的时点流行率呼吸机设定数据进行无监督、多因素聚类分析,将对一组患有严重 BPD 的婴儿进行集中的多中心研究分为离散数量的基于生理学的机械通气方法。
我们对接受有创机械通气治疗的严重 BPD 婴儿的多中心时点流行率研究进行了二次分析。我们使用 Ward 层次聚类分析(HCA)根据平均气道压(MAP)、呼气末正压(PEEP)、设定呼吸频率和吸气时间(Ti)对队列进行聚类。
从 14 个中心纳入了 78 例患有严重 BPD 的患者。HCA 确定了三个离散的聚类,聚类系数为 0.97。通过 Jaccard 系数均值,聚类 1、2 和 3 的稳定性分别为 0.79、0.85 和 0.77,表明聚类稳定性较强。通过 Kruskal-Wallis 检验,对每个比较,组间的中位 PEEP、MAP、频率、Ti 和 PIP 差异均有统计学意义(p < 0.0001)。
在这项研究中,对呼吸机设定数据的无监督聚类分析确定了严重 BPD 婴儿多中心队列中三种不同的机械通气方法。需要进行前瞻性试验以确定这些机械通气方法是否与特定的严重 BPD 临床表型相关,以及是否可以不同程度地改变呼吸结局。