Suppr超能文献

考虑葡萄糖代谢对早期非小细胞肺癌阴性淋巴结转移的准确预测。

An accurate prediction of negative lymph node metastasis with consideration of glucose metabolism in early-stage non-small cell lung cancer.

机构信息

Division of Thoracic Surgery, National Cancer Center Hospital East, Kashiwanoha 6-5-1, Kashiwa, Chiba, 277-8577, Japan.

Biostastics Division, Center for Research Administration and Support, National Cancer Center Hospital East, Kashiwa, Japan.

出版信息

Gen Thorac Cardiovasc Surg. 2024 Jan;72(1):24-30. doi: 10.1007/s11748-023-01946-3. Epub 2023 Jun 2.

Abstract

OBJECTIVE

We aimed to identify risk factors in lymph node metastasis in early-stage non-small cell lung cancer (NSCLC) and predict lymph node metastasis.

METHODS

A total of 416 patients with clinical stage IA2-3 NSCLC who underwent lobectomy and lymph node dissection between July 2016 and December 2020 at National Cancer Center Hospital East were included. Multivariable logistic regression was performed to develop a model for predicting lymph node metastasis. Leave-one-out cross-validation was performed to evaluate the developing prediction model, and sensitivity, specificity, and concordance statistics were calculated to evaluate its diagnostic performance.

RESULTS

The formula for calculating the probability of pathological lymph node metastasis included SUVmax of the primary tumor and serum CEA level. The concordance statistics was 0.7452. When the cutoff value associated with the risk of incorrectly predicting pathological lymph node metastasis was 7.2%, the diagnostic sensitivity and specificity for predicting metastasis were 96.4% and 38.6%, respectively.

CONCLUSIONS

We created a prediction model for lymph node metastasis in NSCLC by combining the SUVmax of the primary tumor and serum CEA levels, which showed a particularly strong association. This model is clinically useful as it successfully predicts negative lymph node metastasis in patients with clinical stage IA2-3 NSCLC.

摘要

目的

我们旨在确定早期非小细胞肺癌(NSCLC)淋巴结转移的危险因素,并预测淋巴结转移。

方法

共纳入 2016 年 7 月至 2020 年 12 月在国立癌症中心医院东分院接受肺叶切除术和淋巴结清扫术的 416 例临床分期为 IA2-3 的 NSCLC 患者。采用多变量逻辑回归建立预测淋巴结转移的模型。采用留一交叉验证法对建立的预测模型进行评估,并计算敏感性、特异性和一致性统计量以评估其诊断性能。

结果

计算病理淋巴结转移概率的公式包括原发肿瘤 SUVmax 和血清 CEA 水平。一致性统计量为 0.7452。当与预测病理淋巴结转移风险相关的截断值为 7.2%时,预测转移的诊断灵敏度和特异性分别为 96.4%和 38.6%。

结论

我们通过结合原发肿瘤 SUVmax 和血清 CEA 水平,创建了一个 NSCLC 淋巴结转移预测模型,该模型显示出特别强的相关性。该模型在临床中具有一定的应用价值,因为它可以成功预测临床分期为 IA2-3 的 NSCLC 患者的阴性淋巴结转移。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验