Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, BCS CP 23096, Mexico.
Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, BCS CP 23096, Mexico.
Mol Immunol. 2023 Jul;159:58-68. doi: 10.1016/j.molimm.2023.05.008. Epub 2023 Jun 2.
The growing antibiotic resistance and low-efficient vaccines make searching for alternatives a need to fight infectious diseases in newborn calves. Thus, trained immunity could be used as a tool to optimize immune response against a wide range of pathogens. Although β-glucans have shown to induce trained immunity, it has not been demonstrated in bovines yet. Uncontrolled trained immunity activation can generate chronic inflammation in mice and humans, and inhibiting it might reduce excessive immune activation. The aim of this study is to demonstrate that in vitro β-glucan training induces metabolic changes in calf monocytes, characterized by an increase in lactate production and glucose consumption upon restimulation with lipopolysaccharide. These metabolic shifts can be abolished by co-incubation with MCC950, a trained immunity inhibitor. Moreover, the dose-response relationship of β-glucan on the viability of calf monocytes was demonstrated. In newborn calves, in vivo β-glucan oral administration also induced a trained phenotype in innate immune cells, leading to immunometabolic changes, upon ex vivo challenge with E.coli. β-glucan-induced trained immunity improved phagocytosis, nitric oxide production, myeloperoxidase activity, and TNF-α gene expression through up-regulation genes of the TLR2/NF-κB pathway. Furthermore, β-glucan oral doses enhanced consumption and production of glycolysis metabolites (glucose and lactate, respectively), as well as up-regulated expression of mTOR and HIF1-α mRNA. Therefore, the results suggest that β-glucan immune training may confer calf protection from a secondary bacterial challenge, and trained phenotype induced by β-glucan can be inhibited.
抗生素耐药性的不断增加和低效疫苗的出现使得寻找替代品成为防治新生犊牛感染性疾病的迫切需求。因此,训练性免疫可以作为一种工具,优化对广泛病原体的免疫反应。虽然β-葡聚糖已被证明能诱导训练性免疫,但尚未在牛中得到证实。未被控制的训练性免疫激活可能会在小鼠和人类中引发慢性炎症,而抑制这种激活可能会减少过度的免疫激活。本研究旨在证明体外β-葡聚糖训练可诱导小牛单核细胞发生代谢变化,其特征为在脂多糖再刺激时乳酸生成和葡萄糖消耗增加。这些代谢变化可通过与 MCC950(一种训练性免疫抑制剂)共孵育而被消除。此外,还证明了β-葡聚糖对小牛单核细胞活力的剂量反应关系。在新生犊牛中,体内β-葡聚糖口服给药也可诱导先天免疫细胞产生训练表型,导致在体外用大肠杆菌刺激时发生免疫代谢变化。β-葡聚糖诱导的训练性免疫通过上调 TLR2/NF-κB 通路的基因,提高了吞噬作用、一氧化氮产生、髓过氧化物酶活性和 TNF-α 基因表达。此外,β-葡聚糖口服剂量增加了糖酵解代谢物(分别为葡萄糖和乳酸)的消耗和产生,并上调了 mTOR 和 HIF1-α mRNA 的表达。因此,研究结果表明,β-葡聚糖免疫训练可能为小牛提供对二次细菌感染的保护,并且β-葡聚糖诱导的训练表型可以被抑制。