Department of Biology, Kenyon College, Gambier, Ohio, USA.
Appl Environ Microbiol. 2023 Jun 28;89(6):e0046623. doi: 10.1128/aem.00466-23. Epub 2023 Jun 5.
bacteria inhabit human and soil environments that show a wide range of pH values. Strains include commensals as well as antibiotic-resistant pathogens. We investigated the adaptation to pH stress in E. faecalis OG1RF by conducting experimental evolution under acidic (pH 4.8), neutral pH (pH 7.0), and basic (pH 9.0) conditions. A serial planktonic culture was performed for 500 generations and in a high-pH biofilm culture for 4 serial bead transfers. Nearly all of the mutations led to nonsynonomous codons, indicating adaptive selection. All of the acid-adapted clones from the planktonic culture showed a mutation in (encoding elongation factor G). The acid-adapted mutants had a trade-off of decreased resistance to fusidic acid (fusidate). All of the base-adapted clones from the planktonic cultures as well as some from the biofilm-adapted cultures showed mutations that affected the Pst phosphate ABC transporter (, , , ) and (pyrimidine biosynthesis regulator/uracil phosphoribosyltransferase). The biofilm cultures produced small-size colonies on brain heart infusion agar. These variants each contained a single mutation in , , or . The and mutants outgrew the ancestral strain at pH 9.2, with a trade-off of lower growth at pH 4.8. Additional genes that had a mutation in multiple clones that evolved at high pH (but not at low pH) include (oligopeptide ABC transporter), (catabolite control protein A), and (septation protein). Overall, the experimental evolution of E. faecalis showed a strong pH dependence, favoring the fusidate-sensitive elongation factor G modification at low pH and the loss of phosphate transport genes at high pH. E. faecalis bacteria are found in dental biofilms, where they experience low pH as a result of fermentative metabolism. Thus, the effect of pH on antibiotic resistance has clinical importance. The loss of fusidate resistance is notable for OG1RF strains in which fusidate resistance is assumed to be a stable genetic marker. In endodontal infections, enterococci can resist calcium hydroxide therapy that generates extremely high pH values. In other environments, such as the soil and plant rhizosphere, enterococci experience acidification that is associated with climate change. Thus, the pH modulation of natural selection in enterococci is important for human health as well as for understanding soil environments.
细菌栖息在人类和土壤环境中,这些环境的 pH 值范围很广。菌株包括共生菌和抗生素耐药病原体。我们通过在酸性(pH4.8)、中性 pH(pH7.0)和碱性(pH9.0)条件下进行实验进化,研究了屎肠球菌 OG1RF 对 pH 应激的适应。进行了 500 代浮游培养和 4 代珠转移的高 pH 生物膜培养。几乎所有的突变都导致非同义密码子,表明适应性选择。浮游培养物中的所有耐酸克隆都显示出 (编码延伸因子 G)中的突变。耐酸突变体对 fusidic acid(fusidate)的耐药性降低。浮游培养物中的所有碱性适应克隆以及一些生物膜适应克隆都显示出影响 Pst 磷酸盐 ABC 转运体(、、、)和 (嘧啶生物合成调节剂/尿嘧啶磷酸核糖基转移酶)的突变。生物膜培养物在脑心浸液琼脂上产生小菌落。这些变体各自在 、或 中含有一个单一突变。和 突变体在 pH9.2 时比祖先菌株生长更快,但其在 pH4.8 时的生长速度较慢。在高 pH 下进化的多个克隆中发生突变的其他基因(但不在低 pH 下发生突变)包括 (寡肽 ABC 转运体)、 (分解代谢物控制蛋白 A)和 (分隔蛋白)。总的来说,屎肠球菌的实验进化表现出强烈的 pH 依赖性,有利于低 pH 下 fusidate 敏感的延伸因子 G 修饰和高 pH 下磷酸盐转运基因的丢失。
屎肠球菌细菌存在于牙菌斑中,由于发酵代谢,它们在那里经历低 pH 值。因此,pH 值对抗生素耐药性的影响具有临床意义。对于 OG1RF 菌株,fusidate 耐药性的丧失值得注意,因为 fusidate 耐药性被认为是一种稳定的遗传标记。在牙髓感染中,肠球菌可以抵抗氢氧化钙治疗,该治疗会产生极高的 pH 值。在其他环境中,例如土壤和植物根际,肠球菌会酸化,这与气候变化有关。因此,肠球菌中自然选择的 pH 调节对人类健康以及对土壤环境的理解都很重要。