Mathematics Division, School of Advanced Sciences, Vellore Institute of Technology (Chennai Campus), Chennai, Tamil Nadu, India.
Department of Mathematics, Bharathiar University, Coimbatore-46, India.
Environ Sci Pollut Res Int. 2023 Dec;30(60):125254-125274. doi: 10.1007/s11356-023-27548-3. Epub 2023 Jun 5.
Bipolar intuitionistic fuzzy graphs (BIFG) are an extension of fuzzy graphs that can effectively capture uncertain or imprecise information in various applications. In graph theory, the covering, matching, and domination problems are benchmark concepts applied to various domains. These concepts may not be defined precisely using a crisp graph when the vertices and edges are more uncertain. Therefore, this study defines the covering, matching and domination concepts in bipolar intuitionistic fuzzy graphs (BIFG) using effective edges with certain important results. To define these concepts when the effective edges are absent, some novel approaches are discussed. To illustrate the domination concepts, the applications in disaster management and location selection problems are discussed. Further, a BIFG-based decision-making model is designed to identify the flood-vulnerable zones in Chennai, where the city's most and least vulnerable zones are identified. From the proposed model, Kodambakkam ([Formula: see text]) is the most susceptible zone in Chennai. Finally, a comparative analysis is done with the existing techniques to show the efficiency of the model.
双极直觉模糊图(BIFG)是模糊图的扩展,可在各种应用中有效地捕获不确定或不精确的信息。在图论中,覆盖、匹配和控制问题是应用于各种领域的基准概念。当顶点和边更不确定时,使用清晰图可能无法精确定义这些概念。因此,本研究使用具有某些重要结果的有效边在双极直觉模糊图(BIFG)中定义覆盖、匹配和控制概念。为了在没有有效边的情况下定义这些概念,讨论了一些新方法。为了说明控制概念,讨论了在灾害管理和选址问题中的应用。此外,设计了基于 BIFG 的决策模型来识别金奈的洪水易损区,确定了该市最脆弱和最不易受影响的区域。根据所提出的模型,金奈最脆弱的区域是科丹巴卡姆([公式:见文本])。最后,与现有技术进行了比较分析,以显示模型的效率。