Suppr超能文献

机器学习模型预测腹腔镜直肠癌前切除术术后低位前切除综合征:一项多中心研究。

Machine learning model for prediction of low anterior resection syndrome following laparoscopic anterior resection of rectal cancer: A multicenter study.

机构信息

Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.

Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.

出版信息

World J Gastroenterol. 2023 May 21;29(19):2979-2991. doi: 10.3748/wjg.v29.i19.2979.

Abstract

BACKGROUND

Low anterior resection syndrome (LARS) severely impairs patient postoperative quality of life, especially major LARS. However, there are few tools that can accurately predict major LARS in clinical practice.

AIM

To develop a machine learning model using preoperative and intraoperative factors for predicting major LARS following laparoscopic surgery of rectal cancer in Chinese populations.

METHODS

Clinical data and follow-up information of patients who received laparoscopic anterior resection for rectal cancer from two medical centers (one discovery cohort and one external validation cohort) were included in this retrospective study. For the discovery cohort, the machine learning prediction algorithms were developed and internally validated. In the external validation cohort, we evaluated the trained model using various performance metrics. Further, the clinical utility of the model was tested by decision curve analysis.

RESULTS

Overall, 1651 patients were included in the present study. Anastomotic height, neoadjuvant therapy, diverting stoma, body mass index, clinical stage, specimen length, tumor size, and age were the risk factors associated with major LARS. They were used to construct the machine learning model to predict major LARS. The trained random forest (RF) model performed with an area under the curve of 0.852 and a sensitivity of 0.795 (95%CI: 0.681-0.877), a specificity of 0.758 (95%CI: 0.671-0.828), and Brier score of 0.166 in the external validation set. Compared to the previous preoperative LARS score model, the current model exhibited superior predictive performance in predicting major LARS in our cohort (accuracy of 0.772 for the RF model 0.355 for the preoperative LARS score model).

CONCLUSION

We developed and validated a robust tool for predicting major LARS. This model could potentially be used in the clinic to identify patients with a high risk of developing major LARS and then improve the quality of life.

摘要

背景

低位前切除综合征(LARS)严重影响患者术后生活质量,尤其是严重的 LARS。然而,在临床实践中,很少有工具可以准确预测主要 LARS。

目的

使用术前和术中因素为中国人群腹腔镜直肠癌手术后预测主要 LARS 建立机器学习模型。

方法

本回顾性研究纳入了来自两个医疗中心(一个发现队列和一个外部验证队列)接受腹腔镜前切除术治疗直肠癌的患者的临床数据和随访信息。对于发现队列,开发了机器学习预测算法并进行了内部验证。在外部验证队列中,我们使用各种性能指标评估了训练模型。此外,通过决策曲线分析测试了模型的临床实用性。

结果

总体而言,本研究共纳入 1651 例患者。吻合口高度、新辅助治疗、转流造口、体重指数、临床分期、标本长度、肿瘤大小和年龄是与主要 LARS 相关的危险因素。这些因素用于构建预测主要 LARS 的机器学习模型。经过训练的随机森林(RF)模型在外部验证集中的曲线下面积为 0.852,灵敏度为 0.795(95%CI:0.681-0.877),特异性为 0.758(95%CI:0.671-0.828),Brier 评分 0.166。与之前的术前 LARS 评分模型相比,该模型在预测本队列中的主要 LARS 方面表现出更好的预测性能(RF 模型的准确性为 0.772,术前 LARS 评分模型的准确性为 0.355)。

结论

我们开发并验证了一种预测主要 LARS 的强大工具。该模型可能在临床上用于识别发生严重 LARS 的高风险患者,从而提高生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a5f/10237089/5763014b1519/WJG-29-2979-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验