Suppr超能文献

用于改善法医玻璃比对校准的激光烧蚀电感耦合等离子体质谱特征的高斯化

Gaussianization of LA-ICP-MS features to improve calibration in forensic glass comparison.

作者信息

Ramirez-Hereza Pablo, Ramos Daniel, Maroñas Juan, Balanya Sergio A, Almirall Jose

机构信息

AUDIAS Laboratory - Audio, Data Intelligence and Speech, Escuela Politecnica Superior, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 11, 28049 Madrid, Spain.

AUDIAS Laboratory - Audio, Data Intelligence and Speech, Escuela Politecnica Superior, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 11, 28049 Madrid, Spain.

出版信息

Forensic Sci Int. 2023 Aug;349:111735. doi: 10.1016/j.forsciint.2023.111735. Epub 2023 May 19.

Abstract

The forensic comparison of glass aims to compare a glass sample of an unknown source with a control glass sample of a known source. In this work, we use multi-elemental features from Laser Ablation Inductively Coupled Plasma with Mass Spectrometry (LA-ICP-MS) to compute a likelihood ratio. This calculation is a complex procedure that generally requires a probabilistic model including the within-source and between-source variabilities of the features. Assuming the within-source variability to be normally distributed is a practical premise with the available data. However, the between-source variability is generally assumed to follow a much more complex distribution, typically described with a kernel density function. In this work, instead of modeling distributions with complex densities, we propose the use of simpler models and the introduction of a data pre-processing step consisting on the Gaussianization of the glass features. In this context, to obtain a better fit of the features with the Gaussian model assumptions, we explore the use of different normalization techniques of the LA-ICP-MS glass features, namely marginal Gaussianization based on histogram matching, marginal Gaussianization based on Yeo-Johnson transformation and a more complex joint Gaussianization using normalizing flows. We report an improvement in the performance of the Likelihood Ratios computed with the previously Gaussianized feature vectors, particularly relevant in their calibration, which implies a more reliable forensic glass comparison.

摘要

玻璃的法医比对旨在将未知来源的玻璃样本与已知来源的对照玻璃样本进行比较。在这项工作中,我们使用激光烧蚀电感耦合等离子体质谱法(LA-ICP-MS)的多元素特征来计算似然比。这种计算是一个复杂的过程,通常需要一个概率模型,包括特征的源内和源间变异性。假设源内变异性呈正态分布是基于现有数据的一个实际前提。然而,源间变异性通常被假定遵循更复杂的分布,通常用核密度函数来描述。在这项工作中,我们不是用复杂的密度对分布进行建模,而是建议使用更简单的模型,并引入一个数据预处理步骤,即对玻璃特征进行高斯化。在这种情况下,为了使特征更好地符合高斯模型假设,我们探索了对LA-ICP-MS玻璃特征使用不同的归一化技术,即基于直方图匹配的边际高斯化、基于Yeo-Johnson变换的边际高斯化以及使用归一化流的更复杂的联合高斯化。我们报告说,用先前高斯化的特征向量计算的似然比的性能有所提高,这在它们的校准中尤为重要,这意味着更可靠的法医玻璃比对。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验