Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
Sci Adv. 2023 Jun 9;9(23):eadh8502. doi: 10.1126/sciadv.adh8502. Epub 2023 Jun 7.
As a defense strategy against viruses or competitors, some microbes use anticodon nucleases (ACNases) to deplete essential tRNAs, effectively halting global protein synthesis. However, this mechanism has not been observed in multicellular eukaryotes. Here, we report that human SAMD9 is an ACNase that specifically cleaves phenylalanine tRNA (tRNA), resulting in codon-specific ribosomal pausing and stress signaling. While SAMD9 ACNase activity is normally latent in cells, it can be activated by poxvirus infection or rendered constitutively active by SAMD9 mutations associated with various human disorders, revealing tRNA depletion as an antiviral mechanism and a pathogenic condition in SAMD9 disorders. We identified the N-terminal effector domain of SAMD9 as the ACNase, with substrate specificity primarily determined by a eukaryotic tRNA-specific 2'--methylation at the wobble position, making virtually all eukaryotic tRNA susceptible to SAMD9 cleavage. Notably, the structure and substrate specificity of SAMD9 ACNase differ from known microbial ACNases, suggesting convergent evolution of a common immune defense strategy targeting tRNAs.
作为对抗病毒或竞争者的防御策略,一些微生物利用反密码子核酶(ACNase)耗竭必需的 tRNA,有效地阻止全球蛋白质合成。然而,这种机制在多细胞真核生物中尚未观察到。在这里,我们报告人类 SAMD9 是一种 ACNase,它专门切割苯丙氨酸 tRNA(tRNA),导致密码子特异性核糖体暂停和应激信号。虽然 SAMD9 ACNase 活性在细胞中通常处于潜伏状态,但它可以被痘病毒感染激活,或者通过与各种人类疾病相关的 SAMD9 突变使其持续激活,从而揭示了 tRNA 耗竭作为抗病毒机制和 SAMD9 疾病中的致病条件。我们确定了 SAMD9 的 N 端效应结构域为 ACNase,其底物特异性主要由在摆动位置处的 2'--甲基化的真核 tRNA 决定,使得几乎所有的真核 tRNA 都容易受到 SAMD9 的切割。值得注意的是,SAMD9 ACNase 的结构和底物特异性与已知的微生物 ACNase 不同,表明针对 tRNA 的共同免疫防御策略的趋同进化。