School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
J Control Release. 2023 Jul;359:415-427. doi: 10.1016/j.jconrel.2023.06.004. Epub 2023 Jun 16.
Mitochondrion is an ideal target for amplifying ROS attack in antitumor treatment. Benefiting from distinctive properties of mitochondria, the precise delivery of ROS generator to mitochondria could maximumly utilize ROS for oxidation therapy. Herein, we prepared an innovative ROS-activatable nanoprodrug (HTCF) which dually targets tumor cells and mitochondria for antitumor therapy. Cinnamaldehyde (CA) was conjugated to ferrocene (Fc) and triphenylphosphine by thioacetal linker, to synthesize mitochondria-targeting ROS-activated prodrug (TPP-CA-Fc), which subsequently self-assembled into nanoprodrug via host-guest interactions between TPP-CA-Fc and cyclodextrin-decorated hyaluronic acid conjugate. Under mitochondrial high ROS condition, especially in tumor cells, HTCF selectively initiate in-situ Fenton reaction to catalyze HO into highly cytotoxic •OH, ensuring maximum generation and utilization of •OH for precision CDT. Meanwhile, the mitochondrial high ROS trigger thioacetal bond cleavage and CA release. The released CA stimulate mitochondrial oxidative stress aggravation and HO regeneration, which in turn react with Fc for more •OH generation, forming self-amplifying positive feedback cycle of CA release and ROS burst. With self-augmented Fenton reaction and mitochondria-specific destruction, HTCF ultimately induce intracellular ROS burst and severe mitochondrial dysfunction for amplified ROS-mediated antitumor therapy. Such an ingenious organelles-specialized nanomedicine exhibited prominent antitumor effect both in vitro and in vivo, revealing underlying perspectives to amplify tumor-specific oxidation therapy.
线粒体是抗肿瘤治疗中增强 ROS 攻击的理想靶点。得益于线粒体的独特性质,ROS 发生器精确递送到线粒体可以最大限度地利用 ROS 进行氧化治疗。在此,我们制备了一种创新的 ROS 激活型纳米药物(HTCF),该纳米药物双重靶向肿瘤细胞和线粒体,用于抗肿瘤治疗。肉桂醛(CA)通过硫缩醛键连接到二茂铁(Fc)和三苯基膦上,合成靶向线粒体的 ROS 激活前药(TPP-CA-Fc),随后通过 TPP-CA-Fc 与环糊精修饰的透明质酸缀合物之间的主客体相互作用自组装成纳米药物。在线粒体高 ROS 条件下,特别是在肿瘤细胞中,HTCF 选择性地引发原位 Fenton 反应,将 HO 催化成高细胞毒性的•OH,确保•OH 的最大生成和利用,用于精确的 CDT。同时,线粒体高 ROS 触发硫缩醛键断裂和 CA 释放。释放的 CA 刺激线粒体氧化应激加剧和 HO 再生,进而与 Fc 反应生成更多的•OH,形成 CA 释放和 ROS 爆发的自我放大正反馈循环。通过自我增强的 Fenton 反应和线粒体特异性破坏,HTCF 最终导致细胞内 ROS 爆发和严重的线粒体功能障碍,从而增强 ROS 介导的抗肿瘤治疗。这种巧妙的细胞器特异性纳米药物在体内外均表现出显著的抗肿瘤效果,为增强肿瘤特异性氧化治疗提供了潜在的前景。