Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA.
Center for Bioscience Research and Education, Utsunomiya University, Tochigi, 321-8505, Japan.
New Phytol. 2023 Sep;239(5):1819-1833. doi: 10.1111/nph.19052. Epub 2023 Jun 9.
Strigol is the first identified and one of the most important strigolactones (SLs), but the biosynthetic pathway remains elusive. We functionally identified a strigol synthase (cytochrome P450 711A enzyme) in the Prunus genus through rapid gene screening in a set of SL-producing microbial consortia, and confirmed its unique catalytic activity (catalyzing multistep oxidation) through substrate feeding experiments and mutant analysis. We also reconstructed the biosynthetic pathway of strigol in Nicotiana benthamiana and reported the total biosynthesis of strigol in the Escherichia coli-yeast consortium, from the simple sugar xylose, which paves the way for large-scale production of strigol. As proof of concept, strigol and orobanchol were detected in Prunus persica root extrudes. This demonstrated a successful prediction of metabolites produced in plants through gene function identification, highlighting the importance of deciphering the sequence-function correlation of plant biosynthetic enzymes to more accurately predicate plant metabolites without metabolic analysis. This finding revealed the evolutionary and functional diversity of CYP711A (MAX1) in SL biosynthesis, which can synthesize different stereo-configurations of SLs (strigol- or orobanchol-type). This work again emphasizes the importance of microbial bioproduction platform as an efficient and handy tool to functionally identify plant metabolism.
独脚金内酯是最早被发现的植物激素之一,也是最重要的独脚金内酯之一,但它的生物合成途径仍然难以捉摸。我们通过对一组产生独脚金内酯的微生物群落进行快速基因筛选,在李属植物中功能鉴定了一种独脚金内酯合酶(细胞色素 P450 711A 酶),并通过底物喂养实验和突变体分析证实了其独特的催化活性(催化多步氧化)。我们还在黄花烟中重建了独脚金内酯的生物合成途径,并报道了大肠杆菌-酵母共生物中从简单糖木糖到独脚金内酯的总生物合成,为独脚金内酯的大规模生产铺平了道路。作为概念验证,在桃根渗出物中检测到了独脚金内酯和 Orobanchol。这通过基因功能鉴定成功预测了植物中产生的代谢物,突出了解密植物生物合成酶的序列-功能相关性以更准确地预测植物代谢物而无需代谢分析的重要性。这一发现揭示了 CYP711A(MAX1)在独脚金内酯生物合成中的进化和功能多样性,它可以合成不同立体构型的独脚金内酯(独脚金内酯型或 Orobanchol 型)。这项工作再次强调了微生物生物生产平台作为一种有效且便捷的工具,可用于功能鉴定植物代谢物的重要性。