Eisermann Jana, Wright John J, Wilton-Ely James D E T, Hirst Judy, Roessler Maxie M
Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus London W12 0BZ UK
The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus Cambridge CB2 0XY UK.
RSC Chem Biol. 2023 Mar 20;4(6):386-398. doi: 10.1039/d2cb00158f. eCollection 2023 Jun 7.
Complex I is an essential membrane protein in respiration, oxidising NADH and reducing ubiquinone to contribute to the proton-motive force that powers ATP synthesis. Liposomes provide an attractive platform to investigate complex I in a phospholipid membrane with the native hydrophobic ubiquinone substrate and proton transport across the membrane, but without convoluting contributions from other proteins present in the native mitochondrial inner membrane. Here, we use dynamic and electrophoretic light scattering techniques (DLS and ELS) to show how physical parameters, in particular the zeta potential (-potential), correlate strongly with the biochemical functionality of complex I-containing proteoliposomes. We find that cardiolipin plays a crucial role in the reconstitution and functioning of complex I and that, as a highly charged lipid, it acts as a sensitive reporter on the biochemical competence of proteoliposomes in ELS measurements. We show that the change in -potential between liposomes and proteoliposomes correlates linearly with protein retention and catalytic oxidoreduction activity of complex I. These correlations are dependent on the presence of cardiolipin, but are otherwise independent of the liposome lipid composition. Moreover, changes in the -potential are sensitive to the proton motive force established upon proton pumping by complex I, thereby constituting a complementary technique to established biochemical assays. ELS measurements may thus serve as a more widely useful tool to investigate membrane proteins in lipid systems, especially those that contain charged lipids.
复合物I是呼吸作用中一种重要的膜蛋白,它氧化NADH并还原泛醌,以促进质子动力势,从而为ATP合成提供能量。脂质体为研究磷脂膜中的复合物I提供了一个有吸引力的平台,该平台带有天然疏水性泛醌底物,并能实现质子跨膜运输,但不会受到天然线粒体内膜中其他蛋白质的干扰。在这里,我们使用动态光散射和电泳光散射技术(DLS和ELS)来展示物理参数,特别是ζ电位(-电位),如何与含复合物I的蛋白脂质体的生化功能密切相关。我们发现心磷脂在复合物I的重组和功能中起着关键作用,并且作为一种高电荷脂质,它在ELS测量中作为蛋白脂质体生化活性的敏感报告分子。我们表明,脂质体和蛋白脂质体之间的-电位变化与复合物I的蛋白质保留率和催化氧化还原活性呈线性相关。这些相关性依赖于心磷脂的存在,但与脂质体的脂质组成无关。此外,-电位的变化对复合物I质子泵浦产生的质子动力势敏感,从而构成了一种与既定生化分析互补的技术。因此,ELS测量可能成为一种更广泛有用的工具,用于研究脂质系统中的膜蛋白,特别是那些含有带电脂质的膜蛋白。