Wu Jiangbin, Subbaiah Kadiam C Venkata, Hedaya Omar, Chen Si, Munger Joshua, Tang Wai Hong Wilson, Yan Chen, Yao Peng
bioRxiv. 2023 May 22:2023.05.20.541585. doi: 10.1101/2023.05.20.541585.
Mitochondria play a vital role in cellular metabolism and energetics and support normal cardiac function. Disrupted mitochondrial function and homeostasis cause a variety of heart diseases. Fam210a (family with sequence similarity 210 member A), a novel mitochondrial gene, is identified as a hub gene in mouse cardiac remodeling by multi-omics studies. Human FAM210A mutations are associated with sarcopenia. However, the physiological role and molecular function of FAM210A remain elusive in the heart. We aim to determine the biological role and molecular mechanism of FAM210A in regulating mitochondrial function and cardiac health .
Tamoxifen-induced -driven conditional knockout of in the mouse cardiomyocytes induced progressive dilated cardiomyopathy and heart failure, ultimately causing mortality. Fam210a deficient cardiomyocytes exhibit severe mitochondrial morphological disruption and functional decline accompanied by myofilament disarray at the late stage of cardiomyopathy. Furthermore, we observed increased mitochondrial reactive oxygen species production, disturbed mitochondrial membrane potential, and reduced respiratory activity in cardiomyocytes at the early stage before contractile dysfunction and heart failure. Multi-omics analyses indicate that FAM210A deficiency persistently activates integrated stress response (ISR), resulting in transcriptomic, translatomic, proteomic, and metabolomic reprogramming, ultimately leading to pathogenic progression of heart failure. Mechanistically, mitochondrial polysome profiling analysis shows that FAM210A loss of function compromises mitochondrial mRNA translation and leads to reduced mitochondrial encoded proteins, followed by disrupted proteostasis. We observed decreased FAM210A protein expression in human ischemic heart failure and mouse myocardial infarction tissue samples. To further corroborate FAM210A function in the heart, AAV9-mediated overexpression of FAM210A promotes mitochondrial-encoded protein expression, improves cardiac mitochondrial function, and partially rescues murine hearts from cardiac remodeling and damage in ischemia-induced heart failure.
These results suggest that FAM210A is a mitochondrial translation regulator to maintain mitochondrial homeostasis and normal cardiomyocyte contractile function. This study also offers a new therapeutic target for treating ischemic heart disease.
Mitochondrial homeostasis is critical for maintaining healthy cardiac function. Disruption of mitochondrial function causes severe cardiomyopathy and heart failure. In the present study, we show that FAM210A is a mitochondrial translation regulator required for maintaining cardiac mitochondrial homeostasis . Cardiomyocyte-specific FAM210A deficiency leads to mitochondrial dysfunction and spontaneous cardiomyopathy. Moreover, our results indicate that FAM210A is downregulated in human and mouse ischemic heart failure samples and overexpression of FAM210A protects hearts from myocardial infarction induced heart failure, suggesting that FAM210A mediated mitochondrial translation regulatory pathway can be a potential therapeutic target for ischemic heart disease.
线粒体在细胞代谢和能量学中发挥着至关重要的作用,并支持正常的心脏功能。线粒体功能和稳态的破坏会导致多种心脏病。Fam210a(序列相似性家族210成员A)是一种新的线粒体基因,通过多组学研究被确定为小鼠心脏重塑中的一个枢纽基因。人类FAM210A突变与肌肉减少症有关。然而,FAM210A在心脏中的生理作用和分子功能仍不清楚。我们旨在确定FAM210A在调节线粒体功能和心脏健康方面的生物学作用和分子机制。
他莫昔芬诱导的小鼠心肌细胞中Fam210a的条件性敲除导致进行性扩张型心肌病和心力衰竭,最终导致死亡。Fam210a缺陷的心肌细胞在心肌病晚期表现出严重的线粒体形态破坏和功能下降,伴有肌丝紊乱。此外,我们在收缩功能障碍和心力衰竭之前的早期阶段观察到心肌细胞中线粒体活性氧生成增加、线粒体膜电位紊乱和呼吸活性降低。多组学分析表明,FAM210A缺陷持续激活整合应激反应(ISR),导致转录组、翻译组、蛋白质组和代谢组重编程,最终导致心力衰竭的致病进展。机制上,线粒体多核糖体谱分析表明,FAM210A功能丧失损害线粒体mRNA翻译,导致线粒体编码蛋白减少,随后破坏蛋白质稳态。我们在人类缺血性心力衰竭和小鼠心肌梗死组织样本中观察到FAM210A蛋白表达降低。为了进一步证实FAM210A在心脏中的功能,AAV9介导的FAM210A过表达促进线粒体编码蛋白的表达,改善心脏线粒体功能,并部分挽救小鼠心脏免受缺血性心力衰竭引起的心脏重塑和损伤。
这些结果表明,FAM210A是一种线粒体翻译调节因子,可维持线粒体稳态和正常心肌细胞收缩功能。本研究还为治疗缺血性心脏病提供了一个新的治疗靶点。
线粒体稳态对于维持健康的心脏功能至关重要。线粒体功能的破坏会导致严重的心肌病和心力衰竭。在本研究中,我们表明FAM210A是维持心脏线粒体稳态所需的线粒体翻译调节因子。心肌细胞特异性Fam210A缺陷导致线粒体功能障碍和自发性心肌病。此外,我们的结果表明,FAM210A在人类和小鼠缺血性心力衰竭样本中下调,FAM210A的过表达可保护心脏免受心肌梗死引起的心力衰竭,这表明FAM210A介导的线粒体翻译调节途径可能是缺血性心脏病的潜在治疗靶点。