CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.
Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
Glob Chang Biol. 2023 Aug;29(16):4605-4619. doi: 10.1111/gcb.16768. Epub 2023 Jun 9.
Ectomycorrhizal (ECM) functional traits related to nutrient acquisition are impacted by nitrogen (N) deposition. However, less is known about whether these nutrient-acquisition traits associated with roots and hyphae differentially respond to increased N deposition in ECM-dominated forests with different initial N status. We conducted a chronic N addition experiment (25 kg N ha year ) in two ECM-dominated forests with contrasting initial N status, that is, a Pinus armandii forest (with relatively low N availability) and a Picea asperata forest (with relatively high N availability), to assess nutrient-mining and nutrient-foraging strategies associated with roots and hyphae under N addition. We show that nutrient-acquisition strategies of roots and hyphae differently respond to increased N addition. Root nutrient-acquisition strategies showed a consistent response to N addition, regardless of initial forest nutrient status, shifting from organic N mining toward inorganic N foraging. In contrast, the hyphal nutrient-acquisition strategy showed diverse responses to N addition depending on initial forest N status. In the Pinus armandii forest, trees increased belowground carbon (C) allocation to ECM fungi thus enhancing hyphal N-mining capacity under increased N availability. By comparison, in the Picea asperata forest, ECM fungi enhanced both capacities of P foraging and P mining in response to N-induced P limitation. In conclusion, our results demonstrate that ECM fungal hyphae exhibit greater plasticity in nutrient-mining and nutrient-foraging strategies than roots do in response to changes of nutrient status induced by N deposition. This study highlights the importance of ECM associations in tree acclimation and forest function stability under changing environments.
外生菌根(ECM)与养分获取相关的功能特征受氮(N)沉降的影响。然而,对于在具有不同初始 N 状态的 ECM 占主导地位的森林中,这些与根和菌丝相关的养分获取特征是否会因增加的 N 沉降而产生不同的响应,人们知之甚少。我们在两个具有不同初始 N 状态的 ECM 占主导地位的森林中进行了慢性 N 添加实验(25 kg N ha 年),即华山松(相对较低的 N 可利用性)和云南松(相对较高的 N 可利用性),以评估在 N 添加下与根和菌丝相关的养分挖掘和养分觅食策略。我们表明,根和菌丝的养分获取策略对增加的 N 添加有不同的响应。根养分获取策略对 N 添加的响应是一致的,而与初始森林养分状态无关,从有机 N 挖掘转向无机 N 觅食。相比之下,菌丝的养分获取策略对 N 添加的响应因初始森林 N 状态而异。在华山松林,树木增加了地下向 ECM 真菌的碳(C)分配,从而增强了在增加的 N 供应下菌丝的 N 挖掘能力。相比之下,在云南松林,ECM 真菌增强了对 P 的觅食和挖掘能力,以响应 N 诱导的 P 限制。总之,我们的结果表明,与根相比,ECM 真菌菌丝在养分获取策略上表现出更大的可塑性,以响应 N 沉降引起的养分状况变化。本研究强调了 ECM 共生体在树木适应和森林功能稳定性方面的重要性,特别是在变化的环境中。