Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus Universitat Autonoma de Barcelona, Bellaterra 08193, Spain.
School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
Phys Rev Lett. 2023 May 26;130(21):216801. doi: 10.1103/PhysRevLett.130.216801.
In the archetypal antiferroelectric PbZrO_{3}, antiparallel electric dipoles cancel each other, resulting in zero spontaneous polarization at the macroscopic level. Yet in actual hysteresis loops, the cancellation is rarely perfect and some remnant polarization is often observed, suggesting the metastability of polar phases in this material. In this work, using aberration-corrected scanning transmission electron microscopy methods on a PbZrO_{3} single crystal, we uncover the coexistence of the common antiferroelectric phase and a ferrielectric phase featuring an electric dipole pattern of ↓↑↓. This dipole arrangement, predicted by Aramberri et al. to be the ground state of PbZrO_{3} at 0 K, appears at room temperature in the form of translational boundaries. The dual nature of the ferrielectric phase, both a distinct phase and a translational boundary structure, places important symmetry constraints on its growth. These are overcome by sideways motion of the boundaries, which aggregate to form arbitrarily wide stripe domains of the polar phase embedded within the antiferroelectric matrix.
在典型的反铁电 PbZrO_{3}中,反平行的电偶极子相互抵消,导致宏观层面的自发极化为零。然而,在实际的滞后回线中,这种抵消很少是完美的,通常会观察到一些剩余极化,这表明该材料中存在极性相的亚稳性。在这项工作中,我们使用对 PbZrO_{3}单晶的相衬校正扫描透射电子显微镜方法,揭示了常见的反铁电相和具有↓↑↓电偶极子图案的铁电相的共存。这种偶极子排列是由 Aramberri 等人预测的 PbZrO_{3}在 0 K 时的基态,以平移边界的形式出现在室温下。铁电相的双重性质,既是一个独特的相,也是一个平移边界结构,对其生长有重要的对称限制。这些限制通过边界的侧向运动得到克服,边界聚合形成任意宽度的条纹畴,这些畴嵌入在反铁电基体中。