光激发和氧气保存的铱纳米胶囊用于强化氧化损伤肿瘤治疗。

Light-Elicited and Oxygen-Saved Iridium Nanocapsule for Oxidative Damage Intensified Oncotherapy.

机构信息

School of Materials and Chemistry, Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai 200093, China.

Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, Engineering Research Center of Optical Instrument and System, The Ministry of Education & Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China.

出版信息

Molecules. 2023 May 28;28(11):4397. doi: 10.3390/molecules28114397.

Abstract

Regulating redox homeostasis in tumor cells and exploiting oxidative stress to damage tumors is an efficacious strategy for cancer therapy. However, the strengths of organic nanomaterials within this strategy are often ignored. In this work, a light-triggered reactive oxygen species (ROS) damaging nanoamplifier (IrP-T) was developed for enhanced photodynamic therapy (PDT). The IrP-T was fabricated with an amphiphilic iridium complex and a MTH1 inhibitor (TH287). Under green light stimulation, IrP-T catalyzed the oxygen in cells to generate ROS for realizing oxidative damage; meanwhile, TH287 increased the accumulation of 8-oxo-dGTP, further strengthening oxidative stress and inducing cell death. IrP-T could maximize the use of a small amount of oxygen, thus further boosting the efficacy of PDT in hypoxic tumors. The construction of nanocapsules provided a valuable therapeutic strategy for oxidative damage and synergizing PDT.

摘要

调控肿瘤细胞内的氧化还原稳态并利用氧化应激来破坏肿瘤是一种有效的癌症治疗策略。然而,该策略中有机纳米材料的优势往往被忽视。在这项工作中,设计了一种光触发的活性氧(ROS)损伤纳米放大器(IrP-T),用于增强光动力疗法(PDT)。IrP-T 由两亲性铱配合物和 MTH1 抑制剂(TH287)组成。在绿光刺激下,IrP-T 可催化细胞中的氧生成 ROS 以实现氧化损伤;同时,TH287 增加了 8-oxo-dGTP 的积累,进一步增强氧化应激并诱导细胞死亡。IrP-T 可以最大限度地利用少量的氧气,从而进一步提高低氧肿瘤中 PDT 的疗效。纳米胶囊的构建为氧化损伤和协同 PDT 提供了一种有价值的治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e39/10254276/c0990b1a315f/molecules-28-04397-sch001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索