Narra Sudhakar, Liao Po-Sen, Bhosale Sumit S, Diau Eric Wei-Guang
Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.
Center of Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.
Nanomaterials (Basel). 2023 May 24;13(11):1718. doi: 10.3390/nano13111718.
Perovskite nanocrystals (PeNCs) are known for their use in numerous optoelectronic applications. Surface ligands are critical for passivating surface defects to enhance the charge transport and photoluminescence quantum yields of the PeNCs. Herein, we investigated the dual functional abilities of bulky cyclic organic ammonium cations as surface-passivating agents and charge scavengers to overcome the lability and insulating nature of conventional long-chain type oleyl amine and oleic acid ligands. Here, red-emitting hybrid PeNCs of the composition CsFAPbBrI are chosen as the standard (Std) sample, where cyclohexylammonium (CHA), phenylethylammonium (PEA) and (trifuluoromethyl)benzylamonium (TFB) cations were chosen as the bifunctional surface-passivating ligands. Photoluminescence decay dynamics showed that the chosen cyclic ligands could successfully eliminate the shallow defect-mediated decay process. Further, femtosecond transient absorption spectral (TAS) studies uncovered the rapidly decaying non-radiative pathways; i.e., charge extraction (trapping) by the surface ligands. The charge extraction rates of the bulky cyclic organic ammonium cations were shown to depend on their acid dissociation constant (pKa) values and actinic excitation energies. Excitation wavelength-dependent TAS studies indicate that the exciton trapping rate is slower than the carrier trapping rate of these surface ligands.
钙钛矿纳米晶体(PeNCs)因其在众多光电器件中的应用而闻名。表面配体对于钝化表面缺陷以增强PeNCs的电荷传输和光致发光量子产率至关重要。在此,我们研究了庞大的环状有机铵阳离子作为表面钝化剂和电荷清除剂的双重功能能力,以克服传统长链型油胺和油酸配体的不稳定性和绝缘性。在此,选择组成CsFAPbBrI的红色发光混合PeNCs作为标准(Std)样品,其中环己基铵(CHA)、苯乙铵(PEA)和(三氟甲基)苄铵(TFB)阳离子被选为双功能表面钝化配体。光致发光衰减动力学表明,所选的环状配体能够成功消除浅缺陷介导的衰减过程。此外,飞秒瞬态吸收光谱(TAS)研究揭示了快速衰减的非辐射途径,即表面配体的电荷提取(俘获)。庞大的环状有机铵阳离子的电荷提取速率显示取决于它们的酸解离常数(pKa)值和光化激发能量。激发波长相关的TAS研究表明,激子俘获速率比这些表面配体的载流子俘获速率慢。