Faculty of Electronics, Telecommunications and Information Technology, "Gheorghe Asachi" Technical University of Iasi, Bd. Carol I 11A, 700050 Iasi, Romania.
Sensors (Basel). 2023 May 23;23(11):4996. doi: 10.3390/s23114996.
Reliable detection of COVID-19 from cough recordings is evaluated using bag-of-words classifiers. The effect of using four distinct feature extraction procedures and four different encoding strategies is evaluated in terms of the Area Under Curve (AUC), accuracy, sensitivity, and F1-score. Additional studies include assessing the effect of both input and output fusion approaches and a comparative analysis against 2D solutions using Convolutional Neural Networks. Extensive experiments conducted on the COUGHVID and COVID-19 Sounds datasets indicate that sparse encoding yields the best performances, showing robustness against various combinations of feature type, encoding strategy, and codebook dimension parameters.
使用词袋分类器评估从咳嗽记录中可靠检测 COVID-19。从曲线下面积(AUC)、准确性、灵敏度和 F1 分数等方面评估使用四种不同特征提取程序和四种不同编码策略的效果。此外的研究包括评估输入和输出融合方法的效果以及使用卷积神经网络对二维解决方案的比较分析。在 COUGHVID 和 COVID-19 Sounds 数据集上进行的广泛实验表明,稀疏编码可获得最佳性能,对各种特征类型、编码策略和码本维度参数的组合具有稳健性。