Ding Meng, Dong Cuifang, Mao Yufeng, Liu Shuheng, Zhao Yuqing, Wang Xude
College of Chemistry and Chemical Engineering, Cangzhou Normal University, Cangzhou, Hebei 061000, China.
College of Chemistry and Chemical Engineering, Cangzhou Normal University, Cangzhou, Hebei 061000, China.
Bioorg Chem. 2023 Sep;138:106657. doi: 10.1016/j.bioorg.2023.106657. Epub 2023 Jun 7.
Ginsenoside 3β,12β,21α,22β-Hydroxy-24-norolean-12-ene (G-M6), a phase I metabolite of anti-tumor medication 20(R)-25-methoxyl-dammarane-3β,12β,20-triol (AD-1), beats the parent drug in anti-ovarian cancer efficacy. The mechanism of action for ovarian cancer, however, is uncertain. Using network pharmacology, human ovarian cancer cells and nude mouse ovarian cancer xenotransplantation model, the anti-ovarian cancer mechanism of G-M6 was preliminarily explored in this study. The PPAR signal pathway is the key signal pathway of the G-M6 anti-ovarian cancer mechanism, according to data mining and network analysis. Docking tests demonstrated that the bioactive chemical G-M6 was capable of forming a stable bond with the PPARγ target protein capsule. Using human ovarian cancer cells and xenograft model of ovarian cancer to evaluate the anticancer activity of G-M6. The IC value of G-M6 was 5.83±0.36, lower than AD-1 and Gemcitabine. The tumor weight of the RSG 80 mg/kg group (C), G-M6 80 mg/kg group (I), and RSG 80 mg/kg + G-M6 80 mg/kg group (J) after the intervention was as follows: C < I < J. The tumor inhibition rates of groups C, I, and J were 28.6%, 88.7%, and 92.6%, respectively. When RSG and G-M6 are combined to treat ovarian cancer, q = 1.00 is calculated according to King's formula, which indicates that RSG and G-M6 have additive effects. Its molecular mechanism may involve the up-regulation of PPARγ and Bcl-2 protein expressions, and the down-regulation of Bax, Cytochrome C (Cyt. C), Caspase-3, and Caspase-9 protein expressions. These findings serve as a reference for further research into the processes behind ginsenoside G-M6's ovarian cancer therapy.
人参皂苷3β,12β,21α,22β-羟基-24-降齐墩果-12-烯(G-M6)是抗肿瘤药物20(R)-25-甲氧基-达玛烷-3β,12β,20-三醇(AD-1)的I期代谢产物,其抗卵巢癌疗效优于母体药物。然而,其对卵巢癌的作用机制尚不清楚。本研究运用网络药理学、人卵巢癌细胞和裸鼠卵巢癌异种移植模型,对G-M6的抗卵巢癌机制进行了初步探索。数据挖掘和网络分析表明,PPAR信号通路是G-M6抗卵巢癌机制的关键信号通路。对接试验表明,生物活性化合物G-M6能够与PPARγ靶蛋白囊形成稳定的结合。利用人卵巢癌细胞和卵巢癌异种移植模型评估G-M6的抗癌活性。G-M6的IC值为5.83±0.36,低于AD-1和吉西他滨。干预后,RSG 80 mg/kg组(C组)、G-M6 80 mg/kg组(I组)和RSG 80 mg/kg + G-M6 80 mg/kg组(J组)的肿瘤重量如下:C组 < I组 < J组。C组、I组和J组的肿瘤抑制率分别为28.6%、88.7%和92.6%。当RSG和G-M6联合治疗卵巢癌时,根据金氏公式计算q = 1.00,表明RSG和G-M6具有相加作用。其分子机制可能涉及PPARγ和Bcl-2蛋白表达上调,以及Bax、细胞色素C(Cyt. C)、Caspase-3和Caspase-9蛋白表达下调。这些研究结果为进一步研究人参皂苷G-M6治疗卵巢癌的作用机制提供了参考。