Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA..
Biophys Chem. 2023 Sep;300:107062. doi: 10.1016/j.bpc.2023.107062. Epub 2023 Jun 7.
In an effort to unravel the unknown "binary switch" mechanisms underlying the "histone code" hypothesis of gene silencing and activation, we study the dynamics of Heterochromatin Protein 1 (HP1). We find in the literature that when HP1 is bound to tri-methylated Lysine9 (K9me3) of histone-H3 through an aromatic cage consisting of two tyrosines and one tryptophan, it is evicted upon phosphorylation of Serine10 (S10phos) during mitosis. In this work, the kick-off intermolecular interaction of the eviction process is proposed and described in detail on the basis of quantum mechanical calculations: specifically, an electrostatic interaction competes with the cation-π interaction and draws away K9me3 from the aromatic cage. An arginine, abundant in the histonic environment, can form an intermolecular "complex salt bridge" with S10phos and dislodge HP1. The study attempts to reveal the role of phosphorylation of Ser10 on the H3 tail in atomic detail.
为了揭示基因沉默和激活的“组蛋白密码”假说中未知的“双元开关”机制,我们研究了异染色质蛋白 1(HP1)的动态。我们在文献中发现,当 HP1 通过由两个酪氨酸和一个色氨酸组成的芳香笼结合到组蛋白 H3 的三甲基化赖氨酸 9(K9me3)上时,它会在有丝分裂期间被丝氨酸 10(S10phos)磷酸化所驱逐。在这项工作中,我们提出并详细描述了驱逐过程中的起始分子间相互作用:具体来说,静电相互作用与阳离子-π 相互作用竞争,并将 K9me3 从芳香笼中拉出来。组蛋白环境中丰富的精氨酸可以与 S10phos 形成分子间“复合盐桥”,从而驱逐 HP1。该研究试图以原子细节揭示 H3 尾部丝氨酸 10 磷酸化在这一过程中的作用。