Department of Physical Chemistry, University of Geneva, CH-1211 Geneva, Switzerland.
J Phys Chem Lett. 2023 Jun 22;14(24):5602-5606. doi: 10.1021/acs.jpclett.3c01038. Epub 2023 Jun 12.
The nature of the lowest-energy electronic absorption band of crystal violet (CV) and particularly the origin of its high-energy shoulder have been debated since the middle of the past century. The most recent studies invoke a splitting of the S state upon symmetry breaking induced by interactions with the solvent and/or the counterion. Using a combination of stationary and time-resolved polarized spectroscopy together with quantum-chemical calculations, we show that torsional disorder in the ground-state results in an inhomogeneous broadening of the absorption band of CV. The center of the band is mostly due to symmetric molecules with a degenerate S state, whereas the edges originate from transitions to the S and S states of distorted symmetry-broken molecules. Transient-absorption measurements with different excitation wavelengths reveal that these two groups of molecules interconvert rapidly in liquid but not in a rigid environment.
自上个世纪中叶以来,关于结晶紫(CV)的最低能量电子吸收带的本质,特别是其高能肩的起源,一直存在争议。最近的研究认为,S 态在与溶剂和/或抗衡离子相互作用引起的对称性破坏下发生分裂。我们使用稳态和时间分辨偏振光谱学以及量子化学计算的组合,表明在基态中扭转无序导致 CV 的吸收带的不均匀展宽。带的中心主要归因于具有简并 S 态的对称分子,而边缘则源自对扭曲的对称性破坏分子的 S 和 S 态的跃迁。具有不同激发波长的瞬态吸收测量表明,这两组分子在液体中快速相互转换,但在刚性环境中则不然。