Suppr超能文献

采用叶提取物合成 Au/CuO 催化剂用于甘油高效选择性氧化制备 1,3-二羟基丙酮。

Biosynthesis of Au/CuO catalyst with. leaf extract for efficient selective oxidation of glycerol to 1,3-dihydroxyacetone.

机构信息

School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, People's Republic of China.

出版信息

Nanotechnology. 2023 Jun 27;34(36). doi: 10.1088/1361-6528/acdd7c.

Abstract

Efficient conversion of glycerol to 1,3-dihydroxyacetone (DHA) is the affirmation and guarantee of the feasible development of biodiesel industry, but the biocompatibility of catalyst must be considered due to the wide application of DHA in food and medicine industries. In this work, an environmentally benign biosynthesis approach with() leaf extract was employed to fabricate Au/CuO catalysts for the oxidation of glycerol to DHA. The biosynthesized-Au/CuO catalysts were characterized and the effects of plant extracts concentration, gold loading, calcination temperature and reaction conditions on the catalytic performance were systematically analyzed. High catalytic performance with glycerol conversion rate of 95.7% and DHA selectivity of 77.9% can be attained under optimum conditions. This work provides the first example of preparing biocompatible catalyst for the thermal catalytic oxidation of glycerol to DHA, which can not only reach efficient conversion of glycerol and selectivity to DHA, but also is simple, green, environmentally friendly, and promising.

摘要

高效将甘油转化为 1,3-二羟基丙酮(DHA)是生物柴油工业可行发展的肯定和保证,但由于 DHA 在食品和医药行业的广泛应用,必须考虑催化剂的生物相容性。在这项工作中,采用了一种环境友好的生物合成方法,利用()叶提取物来制备用于甘油氧化为 DHA 的 Au/CuO 催化剂。对生物合成的 Au/CuO 催化剂进行了表征,并系统分析了植物提取物浓度、金负载量、煅烧温度和反应条件对催化性能的影响。在最佳条件下,甘油转化率为 95.7%,DHA 选择性为 77.9%,可获得较高的催化性能。这项工作为热催化氧化甘油制备生物相容性催化剂提供了首例,该催化剂不仅能达到甘油的高效转化和 DHA 的选择性,而且具有简单、绿色、环保、有前途的特点。

相似文献

2
The effects of calcination temperature of support on Au/CuO-ZrO catalysts for oxidation of glycerol to dihydroxyacetone.
J Colloid Interface Sci. 2020 Feb 15;560:130-137. doi: 10.1016/j.jcis.2019.10.017. Epub 2019 Oct 13.
3
Selective Oxidation of Glycerol to Dihydroxyacetone over Au/CuZrO Catalysts in Base-Free Conditions.
ACS Appl Mater Interfaces. 2019 Nov 27;11(47):44058-44068. doi: 10.1021/acsami.9b12886. Epub 2019 Nov 19.
5
Dihydroxyacetone: A User Guide for a Challenging Bio-Based Synthon.
Molecules. 2023 Mar 17;28(6):2724. doi: 10.3390/molecules28062724.
6
Efficient production of dihydroxyacetone from biodiesel-derived crude glycerol by newly isolated Gluconobacter frateurii.
Bioresour Technol. 2013 Aug;142:384-9. doi: 10.1016/j.biortech.2013.05.055. Epub 2013 May 23.
7
Multifunctional Heterogeneous Catalysts for the Selective Conversion of Glycerol into Methyl Lactate.
ACS Sustain Chem Eng. 2018 Aug 6;6(8):10923-10933. doi: 10.1021/acssuschemeng.8b02277. Epub 2018 Jun 25.
8
Photocatalytic production of dihydroxyacetone from glycerol on TiO in acetonitrile.
RSC Adv. 2020 Jan 30;10(9):4956-4968. doi: 10.1039/c9ra09434b. eCollection 2020 Jan 29.
10
Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343.
Appl Microbiol Biotechnol. 2007 Sep;76(3):553-9. doi: 10.1007/s00253-007-1003-z. Epub 2007 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验