Suppr超能文献

急性呼吸窘迫综合征期间的肺泡线粒体质量控制。

Alveolar Mitochondrial Quality Control During Acute Respiratory Distress Syndrome.

机构信息

Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina; Center for Hyperbaric Medicine and Environmental Physiology, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina.

Department of Pathology, Duke University School of Medicine, Durham, North Carolina.

出版信息

Lab Invest. 2023 Sep;103(9):100197. doi: 10.1016/j.labinv.2023.100197. Epub 2023 Jun 10.

Abstract

Acute respiratory distress syndrome (ARDS) is a leading cause of respiratory failure and death in patients in the intensive care unit. Experimentally, acute lung injury resolution depends on the repair of mitochondrial oxidant damage by the mitochondrial quality control (MQC) pathways, mitochondrial biogenesis, and mitophagy, but nothing is known about this in the human lung. In a case-control autopsy study, we compared the lungs of subjects dying of ARDS (n = 8; cases) and age-/gender-matched subjects dying of nonpulmonary causes (n = 7; controls). Slides were examined by light microscopy and immunofluorescence confocal microscopy, randomly probing for co-localization of citrate synthase with markers of oxidant stress, mitochondrial DNA damage, mitophagy, and mitochondrial biogenesis. ARDS lungs showed diffuse alveolar damage with edema, hyaline membranes, and neutrophils. Compared with controls, a high degree of mitochondrial oxidant damage was seen in type 2 epithelial (AT2) cells and alveolar macrophages by 8-hydroxydeoxyguanosine and malondialdehyde co-staining with citrate synthase. In ARDS, antioxidant protein heme oxygenase-1 and DNA repair enzyme N-glycosylase/DNA lyase (Ogg1) were found in alveolar macrophages but not in AT2 cells. Moreover, MAP1 light chain-3 (LC3) and serine/threonine-protein kinase (Pink1) staining were absent in AT2 cells, suggesting a mitophagy failure. Nuclear respiratory factor-1 staining was missing in the alveolar region, suggesting impaired mitochondrial biogenesis. Widespread hyperproliferation of AT2 cells in ARDS could suggest defective differentiation into type 1 cells. ARDS lungs show profuse mitochondrial oxidant DNA damage but little evidence of MQC activity in AT2 epithelium. Because these pathways are important for acute lung injury resolution, our findings support MQC as a novel pharmacologic target for ARDS resolution.

摘要

急性呼吸窘迫综合征(ARDS)是重症监护病房患者呼吸衰竭和死亡的主要原因。在实验中,急性肺损伤的恢复取决于线粒体质量控制(MQC)途径、线粒体生物发生和线粒体自噬修复线粒体氧化剂损伤,但人类肺部对此知之甚少。在一项病例对照尸检研究中,我们比较了死于 ARDS 的受试者(n=8;病例)和死于非肺部原因的年龄/性别匹配受试者(n=7;对照)的肺部。通过光镜和免疫荧光共聚焦显微镜检查切片,随机探测柠檬酸合酶与氧化剂应激标志物、线粒体 DNA 损伤、线粒体自噬和线粒体生物发生的共定位。ARDS 肺表现为弥漫性肺泡损伤,伴有水肿、透明膜和中性粒细胞。与对照组相比,在 2 型上皮(AT2)细胞和肺泡巨噬细胞中,通过 8-羟基脱氧鸟苷和丙二醛与柠檬酸合酶共染色,观察到高度的线粒体氧化剂损伤。在 ARDS 中,抗氧化蛋白血红素加氧酶-1 和 DNA 修复酶 N-糖苷酶/DNA 糖苷酶(Ogg1)在肺泡巨噬细胞中,但不在 AT2 细胞中发现。此外,在 AT2 细胞中不存在微管相关蛋白 1 轻链-3(LC3)和丝氨酸/苏氨酸蛋白激酶(Pink1)染色,表明存在线粒体自噬失败。核呼吸因子-1染色在肺泡区域缺失,表明线粒体生物发生受损。ARDS 中 AT2 细胞的广泛过度增殖可能表明分化为 1 型细胞存在缺陷。ARDS 肺显示大量线粒体氧化剂 DNA 损伤,但 AT2 上皮细胞中几乎没有 MQC 活性的证据。由于这些途径对于急性肺损伤的恢复很重要,因此我们的研究结果支持 MQC 作为 ARDS 恢复的新的药物靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbb8/10257518/edeb46094028/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验