Suppr超能文献

流态对抗生物污染涂层性能的影响。

Impact of flow regime on the performance of anti-biofouling coatings.

机构信息

School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47906, USA.

Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.

出版信息

Sci Rep. 2023 Jun 12;13(1):9501. doi: 10.1038/s41598-023-36736-7.

Abstract

Biofouling poses significant challenges for marine transportation due to increased skin drag, which results in increased fuel cost and associated [Formula: see text] emissions. Current antifouling methods involving polymer coating, biocides, and self-depleting layers harm marine ecosystems and contribute to marine pollution. Significant advancements have resulted in using bioinspired coatings to address this issue. However, prior investigations have predominantly focused on wettability and adhesion aspects, resulting in a limited understanding of the impact of flow regime on bioinspired structure patterns for antifouling. We conducted comprehensive experiments with two bioinspired coatings under laminar and turbulent flow regimes and compared them with a smooth surface. The two coatings are composed of regular arrangements of micropillars measuring 85 μm in height and spaced at 180 μm (pattern A) and 50 μm high micropillars spaced at 220 μm (pattern B). Theoretical arguments indicate that wall-normal velocity fluctuations near the micropillars' top significantly contribute to reducing the onset of biofouling under turbulence compared to the smooth surface. Pattern A coating can effectively decrease biofouling by 90% for fouling sizes exceeding 80 microns when compared to a smooth surface subjected to a turbulent flow regime. The coatings exhibited comparable anti-biofouling properties under a laminar flow. Also, the smooth surface experienced substantially higher biofouling under laminar flow compared to turbulent conditions. This underscores how the effectiveness of anti-biofouling approaches is critically influenced by the flow regime.

摘要

生物污垢会对海洋运输造成重大挑战,因为它会增加船体阻力,从而导致燃料成本增加和相关的[Formula: see text]排放增加。目前涉及聚合物涂层、杀生剂和自耗层的防污方法会损害海洋生态系统并导致海洋污染。使用仿生涂层来解决这个问题已经取得了重大进展。然而,之前的研究主要集中在润湿性和附着力方面,因此对流动状态对防污仿生结构模式的影响的理解有限。我们在层流和湍流两种流动状态下对两种仿生涂层进行了全面的实验,并将其与光滑表面进行了比较。这两种涂层由高度为 85μm、间距为 180μm 的规则排列的微柱(图案 A)和高度为 50μm、间距为 220μm 的微柱(图案 B)组成。理论论证表明,与光滑表面相比,湍流中微柱顶部附近的法向速度波动对减少生物污垢的起始有很大的贡献。与光滑表面相比,在湍流状态下,图案 A 涂层可以有效减少 90%大于 80 微米的污垢生物附着。在层流条件下,涂层表现出相当的抗生物附着性能。此外,在层流条件下,光滑表面的生物附着量明显高于湍流条件。这突显了防污方法的有效性受到流动状态的极大影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8754/10260965/fe2a721f9d1a/41598_2023_36736_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验