Suppr超能文献

TTLL4 和 TTLL7 在脑微管谷氨酸化中的独特起始位点和加工活性。

The distinct initiation sites and processing activities of TTLL4 and TTLL7 in glutamylation of brain tubulin.

机构信息

School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.

IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China.

出版信息

J Biol Chem. 2023 Jul;299(7):104923. doi: 10.1016/j.jbc.2023.104923. Epub 2023 Jun 14.

Abstract

Mammalian brain tubulins undergo a reversible posttranslational modification-polyglutamylation-which attaches a secondary polyglutamate chain to the primary sequence of proteins. Loss of its erasers can disrupt polyglutamylation homeostasis and cause neurodegeneration. Tubulin tyrosine ligase like 4 (TTLL4) and TTLL7 were known to modify tubulins, both with preference for the β-isoform, but differently contribute to neurodegeneration. However, differences in their biochemical properties and functions remain largely unknown. Here, using an antibody-based method, we characterized the properties of a purified recombinant TTLL4 and confirmed its sole role as an initiator, unlike TTLL7, which both initiates and elongates the side chains. Unexpectedly, TTLL4 produced stronger glutamylation immunosignals for α-isoform than β-isoform in brain tubulins. Contrarily, the recombinant TTLL7 raised comparable glutamylation immunoreactivity for two isoforms. Given the site selectivity of the glutamylation antibody, we analyzed modification sites of two enzymes. Tandem mass spectrometry analysis revealed their incompatible site selectivity on synthetic peptides mimicking carboxyl termini of α1- and β2-tubulins and a recombinant tubulin. Particularly, in the recombinant α1A-tubulin, a novel region was found glutamylated by TTLL4 and TTLL7, that again at distinct sites. These results pinpoint different site specificities between two enzymes. Moreover, TTLL7 exhibits less efficiency to elongate microtubules premodified by TTLL4, suggesting possible regulation of TTLL7 elongation activity by TTLL4-initiated sites. Finally, we showed that kinesin behaves differentially on microtubules modified by two enzymes. This study underpins the different reactivity, site selectivity, and function of TTLL4 and TTLL7 on brain tubulins and sheds light on their distinct role in vivo.

摘要

哺乳动物脑微管经历一种可逆转的翻译后修饰——多聚谷氨酸化,即在蛋白质的一级序列上添加一个次级多聚谷氨酸链。其“橡皮擦”的缺失会破坏多聚谷氨酸化的平衡,导致神经退行性病变。已知微管酪氨酸连接酶样 4(TTLL4)和 TTLL7 可以修饰微管,它们都偏爱β-异构体,但对神经退行性变的贡献不同。然而,它们在生化特性和功能上的差异在很大程度上仍不清楚。在这里,我们使用基于抗体的方法,对纯化的重组 TTLL4 的特性进行了表征,并证实了它仅作为起始酶的单一作用,与 TTLL7 不同,TTLL7 既起始又延伸侧链。出乎意料的是,TTLL4 在脑微管中对α-异构体的谷氨酸化免疫信号比β-异构体更强。相反,重组 TTLL7 对两种异构体产生了相当的谷氨酸化免疫反应。鉴于谷氨酸化抗体的位点选择性,我们分析了两种酶的修饰位点。串联质谱分析显示,它们在模拟α1-和β2-微管蛋白羧基末端和重组微管的合成肽上的修饰位点选择性不兼容。特别是,在重组α1A-微管蛋白中,发现了 TTLL4 和 TTLL7 修饰的一个新区域,而且在不同的位点。这些结果指出了两种酶之间不同的位点特异性。此外,TTLL7 对 TTLL4 预先修饰的微管的延伸效率较低,这表明 TTLL7 延伸活性可能受到 TTLL4 起始位点的调节。最后,我们表明,驱动蛋白在两种酶修饰的微管上表现出不同的行为。这项研究为 TTLL4 和 TTLL7 在脑微管上的不同反应性、位点选择性和功能提供了基础,并揭示了它们在体内的不同作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4d9/10404701/e07c0e07581f/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验