Yi Xia, Yang Dong, Xu Xiaoyan, Wang Youjun, Guo Yan, Zhang Meng, Wang Yilong, He Yucai, Zhu Jie
National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213164, China.
Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China.
Biotechnol Biofuels Bioprod. 2023 Jun 15;16(1):102. doi: 10.1186/s13068-023-02354-8.
Lignocellulose-derived aldehyde inhibitors seriously blocked the biorefinery of biofuels and biochemicals. To date, the economic production of lignocellulose-based products heavily relied on high productivities of fermenting strains. However, it was expensive and time-consuming for the achievable rational modification to strengthen stress tolerance robustness of aldehyde inhibitors. Here, it aimed to improve aldehyde inhibitors tolerance and cellulosic bioethanol fermentability for the chassis Zymomonas mobilis ZM4 pretreated using energy-efficient and eco-friendly cold plasma.
It was found that bioethanol fermentability was weaker in CSH (corn stover hydrolysates) than that in synthetic medium for Z. mobilis, and thus was attributed to the inhibition of the lignocellulose-derived aldehyde inhibitors in CSH. Convincingly, it further confirmed that the mixed aldehydes severely decreased bioethanol accumulation through additional aldehydes supplementary assays in synthetic medium. After assayed under different processing time (10-30 s), discharge power (80-160 W), and working pressure (120-180 Pa) using cold atmosphere plasma (CAP), it achieved the increased bioethanol fermentability for Z. mobilis after pretreated at the optimized parameters (20 s, 140 W and 165 Pa). It showed that cold plasma brought about three mutation sites including ZMO0694 (E220V), ZMO0843 (L471L) and ZMO0843 (P505H) via Genome resequencing-based SNPs (single nucleotide polymorphisms). A serial of differentially expressed genes (DEGs) were further identified as the potential contributors for stress tolerance via RNA-Seq sequencing, including ZMO0253 and ZMO_RS09265 (type I secretion outer membrane protein), ZMO1941 (Type IV secretory pathway protease TraF-like protein), ZMOr003 and ZMOr006 (16S ribosomal RNA), ZMO0375 and ZMO0374 (levansucrase) and ZMO1705 (thioredoxins). It enriched cellular process, followed by metabolic process and single-organism process for biological process. For KEGG analysis, the mutant was also referred to starch and sucrose metabolism, galactose metabolism and two-component system. Finally, but interestingly, it simultaneously achieved the enhanced stress tolerance capacity of aldehyde inhibitors and bioethanol fermentability in CSH for the mutant Z. mobilis.
Of several candidate genetic changes, the mutant Z. mobilis treated with cold plasma was conferred upon the facilitated aldehyde inhibitors tolerance and bioethanol production. This work would provide a strain biocatalyst for the efficient production of lignocellulosic biofuels and biochemicals.
木质纤维素衍生的醛类抑制剂严重阻碍了生物燃料和生物化学品的生物炼制。迄今为止,木质纤维素基产品的经济生产严重依赖于发酵菌株的高生产率。然而,通过合理修饰来增强醛类抑制剂的耐受性和鲁棒性既昂贵又耗时。在此,旨在提高运动发酵单胞菌ZM4底盘菌株对醛类抑制剂的耐受性以及纤维素生物乙醇的发酵能力,该底盘菌株采用了节能且环保的冷等离子体进行预处理。
发现对于运动发酵单胞菌而言,其在玉米秸秆水解物(CSH)中的生物乙醇发酵能力比在合成培养基中弱,这归因于CSH中木质纤维素衍生的醛类抑制剂的抑制作用。令人信服的是,通过在合成培养基中额外添加醛类进行补充试验,进一步证实了混合醛类严重降低了生物乙醇的积累。在使用冷大气等离子体(CAP)分别在不同处理时间(10 - 30秒)、放电功率(80 - 160瓦)和工作压力(120 - 180帕)下进行测定后,运动发酵单胞菌在优化参数(20秒、140瓦和165帕)预处理后实现了生物乙醇发酵能力的提高。通过基于基因组重测序的单核苷酸多态性(SNP)分析表明,冷等离子体导致了三个突变位点,分别为ZMO0694(E220V)、ZMO0843(L471L)和ZMO0843(P505H)。通过RNA - Seq测序进一步鉴定出一系列差异表达基因(DEG)作为潜在的应激耐受性贡献者,包括ZMO0253和ZMO_RS09265(I型分泌外膜蛋白)、ZMO1941(IV型分泌途径蛋白酶TraF样蛋白)、ZMOr003和ZMOr006(16S核糖体RNA)、ZMO0375和ZMO0374(果聚糖蔗糖酶)以及ZMO1705(硫氧还蛋白)。在生物过程方面,它富集了细胞过程,其次是代谢过程和单细胞过程。对于KEGG分析,该突变体还涉及淀粉和蔗糖代谢、半乳糖代谢以及双组分系统。最后,但有趣的是,对于突变的运动发酵单胞菌,其在CSH中同时实现了醛类抑制剂耐受性和生物乙醇发酵能力的增强。
在几种候选基因变化中,经冷等离子体处理的运动发酵单胞菌突变体具有增强的醛类抑制剂耐受性和生物乙醇生产能力。这项工作将为木质纤维素生物燃料和生物化学品的高效生产提供一种菌株生物催化剂。