State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China.
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China; The Sanya Institute of Nanjing Agricultural University, China.
Plant Sci. 2023 Sep;334:111773. doi: 10.1016/j.plantsci.2023.111773. Epub 2023 Jun 14.
Various pear plant cultivars exhibit diverse abilities to resist pear black spot disease (BSD), while the precise molecular mechanisms of resistance against pear BSD remain unclear. This study proposed a profound expression of a WRKY gene, namely PbrWRKY70, derived from Pyrus bretschneideri Rehd, within a BSD-resistant pear cultivar. Comparative analysis against the wild-type revealed that the overexpression of PbrWRKY70 engendered augmented BSD resistance of transgenic Arabidopsis thaliana and pear calli. Notably, the transgenic plants exhibited higher activities of superoxide dismutase and peroxidase, along with an elevated capacity to counteract superoxide anions via increased anti-O. Additionally, these plants displayed diminished lesion diameter, as well as reduced levels of hydrogen peroxide, malondialdehyde and 1-aminocyclopropane-1-carboxylic acid (ACC) contents. We subsequently demonstrated that PbrWRKY70 selectively bound to the promoter region of ethylene-responsive transcription factor 1B-2 (PbrERF1B-2), a potential negative regulator of ACC, thereby downregulating the expression of ACC synthase gene (PbrACS3). Consequently, we confirmed that PbrWRKY70 could enhance pear resistance against BSD by reducing ethylene production via modulation of the PbrERF1B-2-PbrACS3 pathway. This study established the pivotal relationship among PbrWRKY70, ethylene synthesis and pear BSD resistance, fostering the development of novel BSD-resistant cultivars. Furthermore, this breakthrough holds the potential to enhance pear fruit yield and optimize storage and processing during the later stages of fruit maturation.
不同的梨品种表现出不同的抵抗梨黑斑病(BSD)的能力,而抵抗梨 BSD 的精确分子机制尚不清楚。本研究提出了一个来自白梨(Pyrus bretschneideri Rehd)的 WRKY 基因 PbrWRKY70 的深度表达,该基因在一个抗 BSD 的梨品种中。与野生型相比的比较分析表明,PbrWRKY70 的过表达导致转基因拟南芥和梨愈伤组织的 BSD 抗性增强。值得注意的是,转基因植物表现出更高的超氧化物歧化酶和过氧化物酶活性,以及通过增加抗 O 来对抗超氧阴离子的能力增强。此外,这些植物表现出较小的病变直径,以及减少过氧化氢、丙二醛和 1-氨基环丙烷-1-羧酸(ACC)含量。我们随后证明 PbrWRKY70 选择性地与乙烯响应转录因子 1B-2(PbrERF1B-2)的启动子区域结合,PbrERF1B-2 是 ACC 的潜在负调节剂,从而下调 ACC 合酶基因(PbrACS3)的表达。因此,我们证实 PbrWRKY70 可以通过调节 PbrERF1B-2-PbrACS3 途径来减少乙烯的产生,从而增强梨对 BSD 的抗性。本研究确立了 PbrWRKY70、乙烯合成与梨 BSD 抗性之间的重要关系,为培育新型 BSD 抗性品种奠定了基础。此外,这一突破有可能提高梨的产量,并优化果实成熟后期的贮藏和加工。