Suppr超能文献

多体系统中混沌与局域临界相互作用对混叠动力学的影响特征。

Signatures of the interplay between chaos and local criticality on the dynamics of scrambling in many-body systems.

机构信息

University of Duisburg-Essen, 47048 Duisburg, Germany.

University of Regensburg, 93040 Regensburg, Germany.

出版信息

Phys Rev E. 2023 May;107(5-1):054202. doi: 10.1103/PhysRevE.107.054202.

Abstract

Fast scrambling, quantified by the exponential initial growth of out-of-time-ordered correlators (OTOCs), is the ability to efficiently spread quantum correlations among the degrees of freedom of interacting systems and constitutes a characteristic signature of local unstable dynamics. As such, it may equally manifest both in systems displaying chaos or in integrable systems around criticality. Here we go beyond these extreme regimes with an exhaustive study of the interplay between local criticality and chaos right at the intricate phase-space region where the integrability-chaos transition first appears. We address systems with a well-defined classical (mean-field) limit, as coupled large spins and Bose-Hubbard chains, thus allowing for semiclassical analysis. Our aim is to investigate the dependence of the exponential growth of the OTOCs, defining the quantum Lyapunov exponent λ_{q} on quantities derived from the classical system with mixed phase space, specifically the local stability exponent of a fixed point λ_{loc} as well as the maximal Lyapunov exponent λ_{L} of the chaotic region around it. By extensive numerical simulations covering a wide range of parameters we give support to a conjectured linear dependence 2λ_{q}=aλ_{L}+bλ_{loc}, providing a simple route to characterize scrambling at the border between chaos and integrability.

摘要

快速混乱,通过时间无序相关函数(OTOC)的指数初始增长来量化,是在相互作用系统的自由度之间有效地传播量子相关的能力,并且构成局部不稳定动力学的特征标志。因此,它同样可以在显示混沌的系统或在临界点周围的可积系统中表现出来。在这里,我们通过对局部临界点和混沌之间的相互作用进行详尽的研究,超越了这些极端情况,该研究恰好在可积性-混沌转变首次出现的复杂相空间区域进行。我们研究了具有明确定义的经典(平均场)极限的系统,如耦合的大自旋和玻色-哈伯德链,从而允许进行半经典分析。我们的目的是研究 OTOC 的指数增长的依赖性,该依赖性定义了量子 Lyapunov 指数λ_{q}与具有混合相空间的经典系统得出的量之间的依赖性,特别是固定点的局部稳定性指数λ_{loc}以及其周围混沌区域的最大 Lyapunov 指数λ_{L}。通过广泛的参数覆盖范围的数值模拟,我们支持了一个假设的线性关系 2λ_{q}=aλ_{L}+bλ_{loc},为在混沌和可积性之间的边界处描述混乱提供了一种简单的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验