Suppr超能文献

稳态热力学的热力学不确定性关系。

Thermodynamic uncertainty relations for steady-state thermodynamics.

机构信息

Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

出版信息

Phys Rev E. 2023 May;107(5):L052101. doi: 10.1103/PhysRevE.107.L052101.

Abstract

A system can be driven out of equilibrium by both time-dependent and nonconservative forces, which gives rise to a decomposition of the dissipation into two nonnegative components, called the excess and housekeeping entropy productions. We derive thermodynamic uncertainty relations for the excess and housekeeping entropy. These can be used as tools to estimate the individual components, which are in general difficult to measure directly. We introduce a decomposition of an arbitrary current into housekeeping and excess parts, which provide lower bounds on the respective entropy production. Furthermore, we also provide a geometric interpretation of the decomposition and show that the uncertainties of the two components are not independent, but rather have to obey a joint uncertainty relation, which also yields a tighter bound on the total entropy production. We apply our results to a paradigmatic example that illustrates the physical interpretation of the components of the current and how to estimate the entropy production.

摘要

一个系统可以通过时变力和非保守力被驱离平衡,这导致耗散可以分解为两个非负分量,分别称为过剩和维持熵产生。我们推导出了过剩和维持熵的热力学不确定性关系。这些关系可以用作工具来估计各个分量,而这些分量通常很难直接测量。我们引入了一种将任意电流分解为维持和过剩部分的方法,这为各自的熵产生提供了下界。此外,我们还提供了该分解的几何解释,并表明两个分量的不确定性不是独立的,而是必须遵守联合不确定性关系,这也对总熵产生给出了更紧的界。我们将结果应用于一个范例,说明了电流分量的物理解释以及如何估计熵产生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验