Suppr超能文献

采用完整的质谱筛选方法优化用于蛋白质足迹分析的羟基自由基剂量。

Intact mass spectrometry screening to optimize hydroxyl radical dose for protein footprinting.

机构信息

Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106, USA; Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA.

Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106, USA; Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA.

出版信息

Biochem Biophys Res Commun. 2023 Sep 3;671:343-349. doi: 10.1016/j.bbrc.2023.06.020. Epub 2023 Jun 7.

Abstract

Hydroxyl radical protein footprinting (HRPF) using synchrotron radiation is a well-validated method to assess protein structure in the native solution state. In this method, X-ray radiolysis of water generates hydroxyl radicals that can react with solvent accessible side chains of proteins, with mass spectrometry used to detect the resulting labeled products. An ideal footprinting dose provides sufficient labeling to measure the structure but not so much as to influence the results. The optimization of hydroxyl radical dose is typically performed using an indirect Alexa488 fluorescence assay sensitive to hydroxyl radical concentration, but full evaluation of the experiment's outcome relies upon bottom-up liquid chromatography mass spectrometry (LC-MS) measurements to directly determine sites and extent of oxidative labeling at the peptide and protein level. A direct evaluation of the extent of labeling to provide direct and absolute measurements of dose and "safe" dose ranges in terms of, for example, average numbers of labels per protein, would provide immediate feedback on experimental outcomes prior to embarking on detailed LC-MS analyses. To this end, we describe an approach to integrate intact MS screening of labeled samples immediately following exposure, along with metrics to quantify the extent of observed labeling from the intact mass spectra. Intact MS results on the model protein lysozyme were evaluated in the context of Alexa488 assay results and a bottom-up LC-MS analysis of the same samples. This approach provides a basis for placing delivered hydroxyl radical dose metrics on firmer technical grounds for synchrotron X-ray footprinting of proteins, with explicit parameters to increase the likelihood of a productive experimental outcome. Further, the method directs approaches to provide absolute and direct dosimetry for all types of labeling for protein footprinting.

摘要

利用同步辐射进行羟基自由基蛋白质足迹分析(HRPF)是一种经过充分验证的方法,可用于评估天然溶液状态下的蛋白质结构。在该方法中,水的 X 射线光解生成羟基自由基,可与蛋白质中溶剂可及的侧链反应,然后使用质谱检测产生的标记产物。理想的足迹分析剂量应提供足够的标记以测量结构,但又不会影响结果。羟基自由基剂量的优化通常使用间接的 Alexa488 荧光测定法进行,该测定法对羟基自由基浓度敏感,但实验结果的全面评估依赖于自上而下的液相色谱-质谱(LC-MS)测量,以直接确定肽和蛋白质水平的氧化标记位置和程度。直接评估标记程度可以提供剂量的直接和绝对测量值,并根据例如每个蛋白质的平均标记数量,提供“安全”剂量范围的直接和绝对测量值,从而在进行详细的 LC-MS 分析之前,为实验结果提供即时反馈。为此,我们描述了一种方法,即在暴露后立即对标记样品进行完整的 MS 筛选,并结合指标从完整质谱中量化观察到的标记程度。在 Alexa488 测定结果和对相同样品的自上而下 LC-MS 分析的背景下,评估了模型蛋白溶菌酶的完整 MS 结果。该方法为在蛋白质同步辐射足迹分析中提供更可靠的技术基础的羟基自由基剂量指标奠定了基础,并明确了增加实验结果可行性的参数。此外,该方法为蛋白质足迹分析的所有类型标记提供了绝对和直接的剂量测定方法。

相似文献

1
Intact mass spectrometry screening to optimize hydroxyl radical dose for protein footprinting.
Biochem Biophys Res Commun. 2023 Sep 3;671:343-349. doi: 10.1016/j.bbrc.2023.06.020. Epub 2023 Jun 7.
2
Protein Footprinting with Radical Probe Mass Spectrometry- Two Decades of Achievement.
Protein Pept Lett. 2019;26(1):4-15. doi: 10.2174/0929866526666181128124241.
3
Hydroxyl radical mediated damage of proteins in low oxygen solution investigated using X-ray footprinting mass spectrometry.
J Synchrotron Radiat. 2021 Sep 1;28(Pt 5):1333-1342. doi: 10.1107/S1600577521004744. Epub 2021 Jul 20.
5
Fast Photochemical Oxidation of Proteins Coupled with Mass Spectrometry.
Protein Pept Lett. 2019;26(1):27-34. doi: 10.2174/0929866526666181128124554.
7
Multiplex Chemical Labeling of Amino Acids for Protein Footprinting Structure Assessment.
Anal Chem. 2022 Jul 12;94(27):9819-9825. doi: 10.1021/acs.analchem.2c01640. Epub 2022 Jun 28.
8
Conformational analysis of therapeutic proteins by hydroxyl radical protein footprinting.
AAPS J. 2012 Jun;14(2):206-17. doi: 10.1208/s12248-012-9336-7. Epub 2012 Mar 2.
9
Radiolytic protein footprinting with mass spectrometry to probe the structure of macromolecular complexes.
Annu Rev Biophys Biomol Struct. 2006;35:251-76. doi: 10.1146/annurev.biophys.35.040405.102050.

引用本文的文献

1
An engineered lactate oxidase based electrochemical sensor for continuous detection of biomarker lactic acid in human sweat and serum.
Heliyon. 2024 Jul 9;10(14):e34301. doi: 10.1016/j.heliyon.2024.e34301. eCollection 2024 Jul 30.

本文引用的文献

1
Multiplex Chemical Labeling of Amino Acids for Protein Footprinting Structure Assessment.
Anal Chem. 2022 Jul 12;94(27):9819-9825. doi: 10.1021/acs.analchem.2c01640. Epub 2022 Jun 28.
2
Hydroxyl Radical Protein Footprinting: A Mass Spectrometry-Based Structural Method for Studying the Higher Order Structure of Proteins.
Chem Rev. 2022 Apr 27;122(8):7532-7561. doi: 10.1021/acs.chemrev.1c00432. Epub 2021 Oct 11.
3
New high-throughput endstation to accelerate the experimental optimization pipeline for synchrotron X-ray footprinting.
J Synchrotron Radiat. 2021 Sep 1;28(Pt 5):1321-1332. doi: 10.1107/S1600577521005026. Epub 2021 Jul 20.
4
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
5
Structurally distinct external solvent-exposed domains drive replication of major human prions.
PLoS Pathog. 2021 Jun 17;17(6):e1009642. doi: 10.1371/journal.ppat.1009642. eCollection 2021 Jun.
6
Evolution of a virus-like architecture and packaging mechanism in a repurposed bacterial protein.
Science. 2021 Jun 11;372(6547):1220-1224. doi: 10.1126/science.abg2822.
7
Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications.
Chem Rev. 2020 May 27;120(10):4355-4454. doi: 10.1021/acs.chemrev.9b00815. Epub 2020 Apr 22.
8
Protein Footprinting: Auxiliary Engine to Power the Structural Biology Revolution.
J Mol Biol. 2020 Apr 17;432(9):2973-2984. doi: 10.1016/j.jmb.2020.02.011. Epub 2020 Feb 21.
9
The XFP (17-BM) beamline for X-ray footprinting at NSLS-II.
J Synchrotron Radiat. 2019 Jul 1;26(Pt 4):1388-1399. doi: 10.1107/S1600577519003576. Epub 2019 Jun 4.
10
Assembly of a GPCR-G Protein Complex.
Cell. 2019 May 16;177(5):1232-1242.e11. doi: 10.1016/j.cell.2019.04.022. Epub 2019 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验