Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106, USA; Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA.
Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106, USA; Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA.
Biochem Biophys Res Commun. 2023 Sep 3;671:343-349. doi: 10.1016/j.bbrc.2023.06.020. Epub 2023 Jun 7.
Hydroxyl radical protein footprinting (HRPF) using synchrotron radiation is a well-validated method to assess protein structure in the native solution state. In this method, X-ray radiolysis of water generates hydroxyl radicals that can react with solvent accessible side chains of proteins, with mass spectrometry used to detect the resulting labeled products. An ideal footprinting dose provides sufficient labeling to measure the structure but not so much as to influence the results. The optimization of hydroxyl radical dose is typically performed using an indirect Alexa488 fluorescence assay sensitive to hydroxyl radical concentration, but full evaluation of the experiment's outcome relies upon bottom-up liquid chromatography mass spectrometry (LC-MS) measurements to directly determine sites and extent of oxidative labeling at the peptide and protein level. A direct evaluation of the extent of labeling to provide direct and absolute measurements of dose and "safe" dose ranges in terms of, for example, average numbers of labels per protein, would provide immediate feedback on experimental outcomes prior to embarking on detailed LC-MS analyses. To this end, we describe an approach to integrate intact MS screening of labeled samples immediately following exposure, along with metrics to quantify the extent of observed labeling from the intact mass spectra. Intact MS results on the model protein lysozyme were evaluated in the context of Alexa488 assay results and a bottom-up LC-MS analysis of the same samples. This approach provides a basis for placing delivered hydroxyl radical dose metrics on firmer technical grounds for synchrotron X-ray footprinting of proteins, with explicit parameters to increase the likelihood of a productive experimental outcome. Further, the method directs approaches to provide absolute and direct dosimetry for all types of labeling for protein footprinting.
利用同步辐射进行羟基自由基蛋白质足迹分析(HRPF)是一种经过充分验证的方法,可用于评估天然溶液状态下的蛋白质结构。在该方法中,水的 X 射线光解生成羟基自由基,可与蛋白质中溶剂可及的侧链反应,然后使用质谱检测产生的标记产物。理想的足迹分析剂量应提供足够的标记以测量结构,但又不会影响结果。羟基自由基剂量的优化通常使用间接的 Alexa488 荧光测定法进行,该测定法对羟基自由基浓度敏感,但实验结果的全面评估依赖于自上而下的液相色谱-质谱(LC-MS)测量,以直接确定肽和蛋白质水平的氧化标记位置和程度。直接评估标记程度可以提供剂量的直接和绝对测量值,并根据例如每个蛋白质的平均标记数量,提供“安全”剂量范围的直接和绝对测量值,从而在进行详细的 LC-MS 分析之前,为实验结果提供即时反馈。为此,我们描述了一种方法,即在暴露后立即对标记样品进行完整的 MS 筛选,并结合指标从完整质谱中量化观察到的标记程度。在 Alexa488 测定结果和对相同样品的自上而下 LC-MS 分析的背景下,评估了模型蛋白溶菌酶的完整 MS 结果。该方法为在蛋白质同步辐射足迹分析中提供更可靠的技术基础的羟基自由基剂量指标奠定了基础,并明确了增加实验结果可行性的参数。此外,该方法为蛋白质足迹分析的所有类型标记提供了绝对和直接的剂量测定方法。