Suppr超能文献

采用颗粒活性炭的中试规模好氧颗粒污泥反应器对生活污水的有效脱氮除磷。

Pilot-scale aerobic granular sludge reactors with granular activated carbon for effective nitrogen and phosphorus removal from domestic wastewater.

机构信息

Biofouling and Biofilm Processes Section, WSCD, Bhabha Atomic Research Centre, Kalpakkam 603102, Tamil Nadu, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Trombay, Mumbai 400094, India.

Biofouling and Biofilm Processes Section, WSCD, Bhabha Atomic Research Centre, Kalpakkam 603102, Tamil Nadu, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Trombay, Mumbai 400094, India.

出版信息

Sci Total Environ. 2023 Oct 10;894:164822. doi: 10.1016/j.scitotenv.2023.164822. Epub 2023 Jun 17.

Abstract

Aerobic granular sludge (AGS) is a breakthrough biotechnology of 21st century and an innovative alternative to activated sludge for treating wastewater. Concerns on long-start up periods for development of AGS and stability of granules are impeding its widespread implementation for treating low-strength domestic wastewater especially in tropical climate conditions. Addition of nucleating agents have been shown to improve development of AGS while treating low-strength wastewaters. There are no previous studies on AGS development and biological nutrient removal (BNR) in the presence of nucleating agents during treatment of real domestic wastewater. This study investigated AGS formation and BNR pathways while treating real domestic wastewater in a 2 m pilot-scale granular sequencing batch reactor (gSBR) operated without and with granular activated carbon (GAC) particles. The gSBRs were operated under tropical climate (T ≈ 30 °C) for >4-years to evaluate the effect of GAC addition on granulation, granular stability and BNR at pilot-scale. Formation of granules was observed within 3 months. MLSS values of 4 and 8 g/L were recorded within 6 months in gSBRs without and with GAC particles, respectively. The granules had an average size of 1.2 mm and SVI of 22 mL/g. Ammonium was mainly removed through nitrate formation in the gSBR without GAC. But, ammonium was removed by short-cut nitrification via nitrite due to washout of nitrite oxidizing bacteria in the presence of GAC. Phosphorus removal was much higher in gSBR with GAC due to the establishment of enhanced biological phosphorus removal (EBPR) pathway. After 3 months, the phosphorus removal efficiencies were at 15 % and 75 %, respectively, without and with GAC particles. The addition of GAC led to moderation in bacterial community and enrichment of polyphosphate-accumulating organisms. This is the first ever report on pilot-scale demonstration of AGS technology in the Indian sub-continent and GAC addition on BNR pathways.

摘要

好的,请提供需要翻译的文本。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验