Suppr超能文献

动态对比增强 MRI 的联合纹理分析与扩散峰度成像的直方图分析预测胶质瘤 IDH 突变状态。

Combined texture analysis of dynamic contrast-enhanced MRI with histogram analysis of diffusion kurtosis imaging for predicting IDH mutational status in gliomas.

机构信息

Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, Yangzhou, PR China.

Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.

出版信息

Acta Radiol. 2023 Sep;64(9):2552-2560. doi: 10.1177/02841851231180291. Epub 2023 Jun 18.

Abstract

BACKGROUND

Non-invasive detection of isocitrate dehydrogenase (IDH) mutational status in gliomas is clinically meaningful for molecular stratification of glioma; however, it remains challenging.

PURPOSE

To investigate the usefulness of texture analysis (TA) of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and histogram analysis of diffusion kurtosis imaging (DKI) maps for evaluating IDH mutational status in gliomas.

MATERIAL AND METHODS

This retrospective study enrolled 84 patients with histologically confirmed gliomas, comprising IDH-mutant (n = 34) and IDH-wildtype (n = 50). TA was performed for the quantitative parameters derived by DCE-MRI. Histogram analysis was performed for the quantitative parameters derived by DKI. Unpaired Student's -test was used to identify IDH-mutant and IDH-wildtype gliomas. Logistic regression and receiver operating characteristic (ROC) curve analyses were used to compare the diagnostic performance of each parameter and their combination for predicting the IDH mutational status in gliomas.

RESULTS

Significant statistical differences in the TA of DCE-MRI and histogram analysis of DKI were observed between IDH-mutant and IDH-wildtype gliomas (all  < 0.05). Using multivariable logistic regression, the entropy of K, skewness of V, and K had higher prediction potential for IDH mutations with areas under the ROC curve (AUC) of 0.915, 0.735, and 0.830, respectively. A combination of these analyses for the identification of IDH mutation improved the AUC to 0.978, with a sensitivity and specificity of 94.1% and 96.0%, respectively, which was higher than the single analysis ( < 0.05).

CONCLUSION

Integrating the TA of DCE-MRI and histogram analysis of DKI may help to predict the IDH mutational status.

摘要

背景

在脑胶质瘤中,无创性检测异柠檬酸脱氢酶(IDH)突变状态对于胶质瘤的分子分层具有重要的临床意义,但目前仍具有挑战性。

目的

探讨动态对比增强磁共振成像(DCE-MRI)纹理分析(TA)和扩散峰度成像(DKI)图直方图分析评估脑胶质瘤 IDH 突变状态的价值。

材料与方法

本回顾性研究纳入 84 例经组织学证实的脑胶质瘤患者,包括 IDH 突变型(n=34)和 IDH 野生型(n=50)。对 DCE-MRI 衍生的定量参数进行 TA 分析,对 DKI 衍生的定量参数进行直方图分析。采用独立样本 t 检验比较 IDH 突变型和 IDH 野生型脑胶质瘤。采用 Logistic 回归和受试者工作特征(ROC)曲线分析比较各参数及其组合预测脑胶质瘤 IDH 突变状态的诊断效能。

结果

IDH 突变型和 IDH 野生型脑胶质瘤的 DCE-MRI TA 和 DKI 直方图分析存在显著的统计学差异(均 P<0.05)。多变量 Logistic 回归分析显示,K 熵、V 偏度和 K 值对 IDH 突变的预测能力较高,ROC 曲线下面积(AUC)分别为 0.915、0.735 和 0.830。这些分析的组合用于 IDH 突变的识别可提高 AUC 至 0.978,灵敏度和特异度分别为 94.1%和 96.0%,均高于单项分析(P<0.05)。

结论

整合 DCE-MRI 的 TA 和 DKI 的直方图分析可能有助于预测 IDH 突变状态。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验