Suppr超能文献

血管周围脂肪衰减指数和计算机断层扫描衍生的血流储备分数在识别后续急性冠状动脉综合征罪犯病变中的临床价值。

Clinical value of perivascular fat attenuation index and computed tomography derived fractional flow reserve in identification of culprit lesion of subsequent acute coronary syndrome.

作者信息

Huang Minggang, Han Tingting, Nie Xuan, Zhu Shunming, Yang Di, Mu Yue, Zhang Yan

机构信息

Shaanxi Provincial People's Hospital, Xi'an, China.

出版信息

Front Cardiovasc Med. 2023 Jun 2;10:1090397. doi: 10.3389/fcvm.2023.1090397. eCollection 2023.

Abstract

PURPOSE

To explore the potential of perivascular fat attenuation index (FAI) and coronary computed tomography angiography (CCTA) derived fractional flow reserve (CT-FFR) in the identification of culprit lesion leading to subsequent acute coronary syndrome (ACS).

METHODS

Thirty patients with documented ACS event who underwent invasive coronary angiography (ICA) from February 2019 to February 2021 and had received CCTA in the previous 6 months were collected retrospectively. 40 patients with stable angina pectoris (SAP) were matched as control group according to sex, age and risk factors. The study population has a mean age of 59.3 ± 12.3 years, with a male prevalence of 81.4%. The plaque characteristics, perivascular fat attenuation index (FAI), and coronary computed tomography angiography-derived fractional flow reserve (CT-FFR) of 32 culprit lesions and 30 non-culprit lesions in ACS patients and 40 highest-grade stenosis lesions in SAP patients were statistically analyzed.

RESULTS

FAI around culprit lesions was increased significantly (-72.4 ± 3.2 HU vs. -79.0 ± 7.7 HU, vs. -80.4 ± 7.0HU, all  < 0.001) and CT-FFR was decreased for culprit lesions of ACS patients [0.7(0.1) vs. 0.8(0.1), vs.0.8(0.1), < 0.001] compared to other lesions. According to multivariate analysis, diameter stenosis (DS), FAI, and CT-FFR were significant predictors for identification of the culprit lesion. The integration model of DS, FAI, and CT-FFR showed the significantly highest area under the curve (AUC) of 0.917, compared with other single predictors (all  < 0.05).

CONCLUSIONS

This study proposes a novel integrated prediction model of DS, FAI, and CT-FFR that enhances the diagnostic accuracy of traditional CCTA for identifying culprit lesions that trigger ACS. Furthermore, this model also provides improved risk stratification for patients and offers valuable insights for predicting future cardiovascular events.

摘要

目的

探讨血管周围脂肪衰减指数(FAI)和冠状动脉计算机断层扫描血管造影(CCTA)衍生的血流储备分数(CT-FFR)在识别导致随后急性冠状动脉综合征(ACS)的罪犯病变中的潜力。

方法

回顾性收集2019年2月至2021年2月期间接受有创冠状动脉造影(ICA)且在之前6个月内接受过CCTA检查的30例记录有ACS事件的患者。根据性别、年龄和危险因素将40例稳定型心绞痛(SAP)患者作为对照组进行匹配。研究人群的平均年龄为59.3±12.3岁,男性患病率为81.4%。对ACS患者的32个罪犯病变和30个非罪犯病变以及SAP患者的40个最高级狭窄病变的斑块特征、血管周围脂肪衰减指数(FAI)和冠状动脉计算机断层扫描血管造影衍生的血流储备分数(CT-FFR)进行了统计分析。

结果

与其他病变相比,ACS患者罪犯病变周围的FAI显著升高(-72.4±3.2 HU对-79.0±7.7 HU,对-80.4±7.0 HU,均<0.001),且罪犯病变的CT-FFR降低[0.7(0.1)对0.8(0.1),对0.8(0.1),< 0.001]。根据多变量分析,直径狭窄(DS)、FAI和CT-FFR是识别罪犯病变的重要预测因素。与其他单一预测因素相比,DS、FAI和CT-FFR的整合模型显示曲线下面积(AUC)显著最高,为0.917(均<0.05)。

结论

本研究提出了一种新的DS、FAI和CT-FFR综合预测模型,该模型提高了传统CCTA识别触发ACS的罪犯病变的诊断准确性。此外,该模型还为患者提供了改进的风险分层,并为预测未来心血管事件提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/032c/10272850/4a291317ceba/fcvm-10-1090397-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验