Department of Chemical Engineering, Advanced Materials for Photonics and Lasers, University of Rochester, Rochester, New York 14627-0166, United States.
Langmuir. 2023 Jul 4;39(26):9180-9185. doi: 10.1021/acs.langmuir.3c00981. Epub 2023 Jun 19.
Chiral nanomaterials possess unique electronic, magnetic, and optical properties that are relevant to a wide range of applications including photocatalysis, chiral photonics, and biosensing. A simple, bottom-up method to create chiral, inorganic structures is introduced that involves the co-assembly of TiO nanorods with cellulose nanocrystals (CNCs) in water. To guide experimental efforts, a phase diagram was constructed to describe how phase behavior depends on the CNCs/TiO/HO composition. A lyotropic cholesteric mesophase was observed to extend over a wide composition range as high as 50 wt % TiO nanorods, far exceeding other examples of inorganic nanorods/CNCs co-assembly. Such a high loading enables the fabrication of inorganic, free-standing chiral films through removal of water and calcination. Distinct from the traditional templating method using CNCs, this new approach separates sol-gel synthesis from particle self-assembly using low-cost nanorods.
手性纳米材料具有独特的电子、磁和光学性质,与包括光催化、手性光子学和生物传感在内的广泛应用相关。本文介绍了一种简单的自上而下的方法来创建手性无机结构,涉及到 TiO 纳米棒与纤维素纳米晶体(CNCs)在水中的共组装。为了指导实验工作,构建了一个相图来描述相行为如何取决于 CNCs/TiO/HO 的组成。观察到溶致胆甾相在高达 50wt%TiO 纳米棒的高浓度范围内延伸,远远超过其他无机纳米棒/CNCs 共组装的例子。如此高的负载量可以通过去除水和煅烧来制备无机、独立的手性薄膜。与使用 CNCs 的传统模板方法不同,这种新方法使用低成本的纳米棒将溶胶-凝胶合成与颗粒自组装分开。