Suppr超能文献

基于变分门控自动编码器的特征提取模型,用于基于多视图特征推断疾病-miRNA 关联。

Variational gated autoencoder-based feature extraction model for inferring disease-miRNA associations based on multiview features.

机构信息

College of Software Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China.

School of Information Science and Engineering, Yunnan University, Kunming 650500, China.

出版信息

Neural Netw. 2023 Aug;165:491-505. doi: 10.1016/j.neunet.2023.05.052. Epub 2023 Jun 5.

Abstract

MicroRNAs (miRNA) play critical roles in diverse biological processes of diseases. Inferring potential disease-miRNA associations enable us to better understand the development and diagnosis of complex human diseases via computational algorithms. The work presents a variational gated autoencoder-based feature extraction model to extract complex contextual features for inferring potential disease-miRNA associations. Specifically, our model fuses three different similarities of miRNAs into a comprehensive miRNA network and then combines two various similarities of diseases into a comprehensive disease network, respectively. Then, a novel graph autoencoder is designed to extract multilevel representations based on variational gate mechanisms from heterogeneous networks of miRNAs and diseases. Finally, a gate-based association predictor is devised to combine multiscale representations of miRNAs and diseases via a novel contrastive cross-entropy function, and then infer disease-miRNA associations. Experimental results indicate that our proposed model achieves remarkable association prediction performance, proving the efficacy of the variational gate mechanism and contrastive cross-entropy loss for inferring disease-miRNA associations.

摘要

MicroRNAs (miRNA) 在疾病的多种生物学过程中发挥着关键作用。通过计算算法推断潜在的疾病-miRNA 关联,使我们能够更好地理解复杂人类疾病的发生和诊断。本工作提出了一种基于变分门控自动编码器的特征提取模型,用于提取复杂的上下文特征,以推断潜在的疾病-miRNA 关联。具体来说,我们的模型将三种不同的 miRNA 相似度融合到一个综合的 miRNA 网络中,然后将两种不同的疾病相似度分别合并到一个综合的疾病网络中。然后,设计了一种新的图自动编码器,基于变分门机制从 miRNA 和疾病的异构网络中提取多层次表示。最后,通过一种新的对比交叉熵函数,基于门的关联预测器将 miRNA 和疾病的多尺度表示进行组合,并推断疾病-miRNA 关联。实验结果表明,我们提出的模型在关联预测性能方面取得了显著的效果,证明了变分门机制和对比交叉熵损失在推断疾病-miRNA 关联方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验