Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China.
Max Planck Institute for Chemistry, Mainz 55128, Germany.
J Environ Sci (China). 2023 Oct;132:83-97. doi: 10.1016/j.jes.2022.09.034. Epub 2022 Oct 7.
Daytime HONO photolysis is an important source of atmospheric hydroxyl radicals (OH). Knowledge of HONO formation chemistry under typical haze conditions, however, is still limited. In the Multiphase chemistry experiment in Fogs and Aerosols in the North China Plain in 2018, we investigated the wintertime HONO formation and its atmospheric implications at a rural site Gucheng. Three different episodes based on atmospheric aerosol loading levels were classified: clean periods (CPs), moderately polluted periods (MPPs) and severely polluted periods (SPPs). Correlation analysis revealed that HONO formation via heterogeneous conversion of NO was more efficient on aerosol surfaces than on ground, highlighting the important role of aerosols in promoting HONO formation. Daytime HONO budget analysis indicated a large missing source (with an average production rate of 0.66 ± 0.26, 0.97 ± 0.47 and 1.45 ± 0.55 ppbV/hr for CPs, MPPs and SPPs, respectively), which strongly correlated with photo-enhanced reactions (NO heterogeneous reaction and particulate nitrate photolysis). Average OH formation derived from HONO photolysis reached up to (0.92 ± 0.71), (1.75 ± 1.26) and (1.82 ± 1.47) ppbV/hr in CPs, MPPs and SPPs respectively, much higher than that from O photolysis (i.e., (0.004 ± 0.004), (0.006 ± 0.007) and (0.0035 ± 0.0034) ppbV/hr). Such high OH production rates could markedly regulate the atmospheric oxidation capacity and hence promote the formation of secondary aerosols and pollutants.
白天 HONO 的光解是大气羟基自由基(OH)的一个重要来源。然而,在典型雾霾条件下,HONO 形成化学的知识仍然有限。在 2018 年中国华北平原雾和气溶胶多相化学实验中,我们在一个农村站点古城镇研究了冬季 HONO 的形成及其大气影响。根据大气气溶胶负荷水平,将三个不同的时段分为:清洁期(CPs)、中度污染期(MPPs)和严重污染期(SPPs)。相关分析表明,NO 在气溶胶表面的异相转化比在地面上更有效地形成 HONO,突出了气溶胶在促进 HONO 形成方面的重要作用。白天 HONO 预算分析表明存在一个大的缺失源(平均生成速率分别为 0.66±0.26、0.97±0.47 和 1.45±0.55 ppbV/hr,对应 CPs、MPPs 和 SPPs),与光增强反应(NO 异相反应和颗粒硝酸盐光解)强烈相关。HONO 光解产生的平均 OH 形成速率在 CPs、MPPs 和 SPPs 中分别高达(0.92±0.71)、(1.75±1.26)和(1.82±1.47)ppbV/hr,远高于 O 光解的生成速率(即,(0.004±0.004)、(0.006±0.007)和(0.0035±0.0034)ppbV/hr)。如此高的 OH 生成速率可以显著调节大气氧化能力,从而促进二次气溶胶和污染物的形成。