Materials Electrochemistry & Energy Storage Laboratory, Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India.
Langmuir. 2023 Jul 4;39(26):9111-9129. doi: 10.1021/acs.langmuir.3c00836. Epub 2023 Jun 19.
In order to improve the electro-microstructural physiognomics of electrode materials for applications in better efficiency supercapacitors, herein graphitic carbon nitride (GCN)-heterostructurized CoS-NiCoS is designed using a controlled material growth synthesis procedure. The developed CoS-NiCoS/GCN possesses ample hydrophilicity, possible charge transfer between GCN and CoS-NiCoS, uniform phase distribution, and distinctive microstructural characteristics. The preliminary electrochemical studies in the three-electrode setup show GCN-induced lower charge transfer resistance and very unique Warburg profile corresponding to extremely low diffusion resistance in CoS-NiCoS/GCN as compared to pristine CoS-NiCoS. Furthermore, GCN is found to significantly induce surface-controlled (capacitive-type) charge storage and frequency-independent specific capacitance up to 10 Hz in CoS-NiCoS. Furthermore, the CoS-NiCoS||N-rGO and CoS-NiCoS/GCN||N-rGO all-solid-state hybrid supercapacitor (ASSHSC) devices were fabricated using N-rGO as the negative electrode material, and the inducing effect of GCN on the supercapacitive charge storage performance of the devices is thoroughly studied. Results demonstrate that the mass specific capacitance and areal capacitance of CoS-NiCoS/GCN||N-rGO are ∼2 and ∼4 times more than those of the CoS-NiCoS||N-rGO ASSHSC device, respectively. Furthermore, the CoS-NiCoS/GCN||N-rGO offers more energy density, rate energy density, and additional charge-discharge durability (over ∼10,000 cycles) than the CoS-NiCoS||N-rGO ASSHSC device. The multifold performance improvement of CoS-NiCoS with GCN heterostructurization is ascribed to GCN-induced supplemented porosity and pore widening, ionic nonstoichiometry (Ni, Co, and Co), wettability, integrated enhancement in the conductivity, and electroactive-ion accessibility in the CoS-NiCoS/GCN heterocomposite. The present study offers vital physicoelectrochemical insights toward the future development of low cost and high-performance electrode materials, and their implementation in high-rate and operationally stable all-solid-state hybrid supercapacitor devices, for application in the next-generation front-line technologies.
为了提高应用于高效率超级电容器的电极材料的电微结构表象,本文通过控制材料生长合成工艺设计了石墨相氮化碳(GCN)杂化 CoS-NiCoS。所开发的 CoS-NiCoS/GCN 具有充足的亲水性、GCN 与 CoS-NiCoS 之间可能的电荷转移、均匀的相分布和独特的微观结构特征。在三电极装置中的初步电化学研究表明,与原始 CoS-NiCoS 相比,GCN 诱导的电荷转移电阻更低,并且 CoS-NiCoS/GCN 具有非常独特的 Warburg 轮廓,对应于极低的扩散阻力。此外,发现 GCN 可显著诱导 CoS-NiCoS 中的表面控制(电容型)电荷存储和在 10 Hz 下频率无关的比电容。此外,使用 N-rGO 作为负极材料制造了 CoS-NiCoS||N-rGO 和 CoS-NiCoS/GCN||N-rGO 全固态混合超级电容器(ASSHSC)器件,并彻底研究了 GCN 对器件超级电容存储性能的诱导作用。结果表明,CoS-NiCoS/GCN||N-rGO 的质量比电容和面电容分别比 CoS-NiCoS||N-rGO ASSHSC 器件高约 2 倍和 4 倍。此外,CoS-NiCoS/GCN||N-rGO 提供了更高的能量密度、速率能量密度和额外的充放电耐久性(超过 10,000 次循环),优于 CoS-NiCoS||N-rGO ASSHSC 器件。CoS-NiCoS 与 GCN 杂化化的多倍性能提升归因于 GCN 诱导的补充孔隙率和孔径拓宽、离子非化学计量比(Ni、Co 和 Co)、润湿性、CoS-NiCoS/GCN 杂化复合材料中导电性和电活性离子可及性的综合增强。本研究为低成本、高性能电极材料的未来发展以及在下一代前沿技术中应用于高倍率和操作稳定的全固态混合超级电容器器件中的实施提供了重要的物理电化学见解。