Suppr超能文献

使用人工智能检测角膜新生血管区域。

Detecting the corneal neovascularisation area using artificial intelligence.

机构信息

Department of Ophthalmology, Saarland University Medical Center (UKS), Homburg, Saarland, Germany

Department of Ophthalmology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey.

出版信息

Br J Ophthalmol. 2024 May 21;108(5):667-672. doi: 10.1136/bjo-2023-323308.

Abstract

AIMS

To create and assess the performance of an artificial intelligence-based image analysis tool for the measurement and quantification of the corneal neovascularisation (CoNV) area.

METHODS

Slit lamp images of patients with CoNV were exported from the electronic medical records and included in the study. An experienced ophthalmologist made manual annotations of the CoNV areas, which were then used to create, train and evaluate an automated image analysis tool that uses deep learning to segment and detect CoNV areas. A pretrained neural network (U-Net) was used and fine-tuned on the annotated images. Sixfold cross-validation was used to evaluate the performance of the algorithm on each subset of 20 images. The main metric for our evaluation was intersection over union (IoU).

RESULTS

The slit lamp images of 120 eyes of 120 patients with CoNV were included in the analysis. Detections of the total corneal area achieved IoU between 90.0% and 95.5% in each fold and those of the non-vascularised area achieved IoU between 76.6% and 82.2%. The specificity for the detection was between 96.4% and 98.6% for the total corneal area and 96.6% and 98.0% for the non-vascularised area.

CONCLUSION

The proposed algorithm showed a high accuracy compared with the measurement made by an ophthalmologist. The study suggests that an automated tool using artificial intelligence may be used for the calculation of the CoNV area from the slit-lamp images of patients with CoNV.

摘要

目的

创建并评估一种基于人工智能的图像分析工具,用于测量和量化角膜新生血管(CoNV)的面积。

方法

从电子病历中导出患有 CoNV 的患者的裂隙灯图像,并将其纳入研究。一位经验丰富的眼科医生对 CoNV 区域进行了手动标注,然后使用这些标注来创建、训练和评估一种使用深度学习来分割和检测 CoNV 区域的自动化图像分析工具。使用了预训练的神经网络(U-Net),并在标注图像上进行了微调。使用六重交叉验证来评估算法在每个包含 20 张图像的子集上的性能。我们的评估主要指标是交并比(IoU)。

结果

共纳入了 120 例 120 只患有 CoNV 的患者的裂隙灯图像。在每次折叠中,总角膜区域的检测获得了 90.0%至 95.5%的 IoU,非血管化区域的检测获得了 76.6%至 82.2%的 IoU。总角膜区域的检测特异性在 96.4%至 98.6%之间,非血管化区域的检测特异性在 96.6%至 98.0%之间。

结论

与眼科医生的测量相比,该算法显示出较高的准确性。该研究表明,一种使用人工智能的自动化工具可能用于从患有 CoNV 的患者的裂隙灯图像中计算 CoNV 区域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验