Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China.
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China.
Langmuir. 2023 Jul 4;39(26):9230-9238. doi: 10.1021/acs.langmuir.3c01138. Epub 2023 Jun 21.
Interfacial engineering is a critical pathway for modulating the self-assembled nanostructures of block copolymers (BCPs) during solvent exchange. Herein, we demonstrated the generation of different stacked lamellae of polystyrene--poly(2-vinyl pyridine) (PS--P2VP) nanostructures during solvent exchange by using phosphotungstic acid (PTA) or PTA/NaCl aqueous solution as the nonsolvent. The participation of PTA in the confined microphase separation of PS--P2VP in droplets increases the volume fraction of P2VP and decreases the tension at the oil/water interface. Moreover, the addition of NaCl to the PTA solution can further increase the surface coverage of P2VP/PTA on droplets. All factors impact the morphology of assembled BCP nanostructures. In the presence of PTA, ellipsoidal particles composed of alternatively stacked lamellae of PS and P2VP were formed (named BP), whereas, in the coexistence of PTA and NaCl, they changed to stacked disks with PS-core-P2VP-shell (called BPN). The different structures of assembled particles induce their different stabilities in solvents and different dissociation conditions as well. The dissociation of BP particles was easy because PS chains were only entangled together which can be swollen in toluene or chloroform. However, the dissociation of BPN was hard, requiring an organic base in hot ethanol. The structural difference in BP and BPN particles further extended to their dissociated disks, which makes the cargo (like R6G) loaded on these disks to show a different stability in acetone. This study demonstrated that a subtle structural change can greatly affect their properties.
界面工程是调控嵌段共聚物(BCPs)在溶剂交换过程中自组装纳米结构的关键途径。在此,我们通过使用磷钨酸(PTA)或 PTA/NaCl 水溶液作为非溶剂,证明了聚苯乙烯-聚(2-乙烯基吡啶)(PS-P2VP)纳米结构在溶剂交换过程中会产生不同堆叠的层状结构。PTA 参与 PS-P2VP 液滴中的受限微相分离会增加 P2VP 的体积分数并降低油/水界面的张力。此外,向 PTA 溶液中添加 NaCl 可以进一步增加 P2VP/PTA 在液滴上的表面覆盖率。所有这些因素都影响组装 BCP 纳米结构的形态。在 PTA 的存在下,形成了由 PS 和 P2VP 交替堆叠层组成的椭圆形颗粒(称为 BP),而在 PTA 和 NaCl 共存的情况下,它们转变为具有 PS-核-P2VP-壳的堆叠盘(称为 BPN)。组装颗粒的不同结构导致它们在溶剂中的不同稳定性和不同的解离条件。BP 颗粒的解离很容易,因为 PS 链仅缠结在一起,可以在甲苯或氯仿中溶胀。然而,BPN 的解离很难,需要在热乙醇中加入有机碱。BP 和 BPN 颗粒的结构差异进一步扩展到它们解离的盘上,这使得负载在这些盘上的货物(如 R6G)在丙酮中表现出不同的稳定性。本研究表明,微小的结构变化会极大地影响它们的性能。