Suppr超能文献

基于多尺度集成空间权重模块和双相似性引导的肝脏 CT-MR 图像无监督配准。

Unsupervised registration for liver CT-MR images based on the multiscale integrated spatial-weight module and dual similarity guidance.

机构信息

Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou 215163, China.

University of California, Davis, United States.

出版信息

Comput Med Imaging Graph. 2023 Sep;108:102260. doi: 10.1016/j.compmedimag.2023.102260. Epub 2023 Jun 14.

Abstract

PURPOSE

Multimodal registration is a key task in medical image analysis. Due to the large differences of multimodal images in intensity scale and texture pattern, it is a great challenge to design distinctive similarity metrics to guide deep learning-based multimodal image registration. Besides, since the limitation of the small receptive field, existing deep learning-based methods are mainly suitable for small deformation, but helpless for large deformation. To address the above issues, we present an unsupervised multimodal image registration method based on the multiscale integrated spatial-weight module and dual similarity guidance.

METHODS

In this method, a U-shape network with our multiscale integrated spatial-weight module is embedded into a multi-resolution image registration architecture to achieve end-to-end large deformation registration, where the spatial-weight module can effectively highlight the regions with large deformation and aggregate discriminative features, and the multi-resolution architecture further helps to solve the optimization problem of the network in a coarse-to-fine pattern. Furthermore, we introduce a special loss function based on dual similarity, which represents both global gray-scale similarity and local feature similarity, to optimize the unsupervised multimodal registration network.

RESULTS

We verified the effectiveness of the proposed method on liver CT-MR images. Experimental results indicate that the proposed method achieves the optimal DSC value and TRE value of 92.70 ± 1.75(%) and 6.52 ± 2.94(mm), compared with other state-of-the-art registration algorithms.

CONCLUSION

The proposed method can accurately estimate the large deformation field by aggregating multiscale features, and achieve higher registration accuracy and fast registration speed. Comparative experiments also demonstrate the effectiveness and generalization ability of the algorithm.

摘要

目的

多模态配准是医学图像分析中的一项关键任务。由于多模态图像在强度尺度和纹理模式上存在较大差异,因此设计有区别的相似性度量标准来指导基于深度学习的多模态图像配准是一项巨大的挑战。此外,由于小感受野的限制,现有的基于深度学习的方法主要适用于小变形,但对于大变形则无能为力。针对上述问题,我们提出了一种基于多尺度集成空间权重模块和双相似性引导的无监督多模态图像配准方法。

方法

在该方法中,一个带有我们的多尺度集成空间权重模块的 U 形网络被嵌入到多分辨率图像配准架构中,以实现端到端的大变形配准,其中空间权重模块可以有效地突出大变形区域并聚合有区别的特征,而多分辨率架构则进一步有助于以粗到精的模式解决网络的优化问题。此外,我们引入了一种基于双相似性的特殊损失函数,它同时表示全局灰度相似性和局部特征相似性,以优化无监督多模态配准网络。

结果

我们在肝 CT-MR 图像上验证了所提出方法的有效性。实验结果表明,与其他先进的配准算法相比,所提出的方法在最优 DSC 值和 TRE 值方面达到了 92.70±1.75(%)和 6.52±2.94(mm)。

结论

该方法通过聚合多尺度特征可以准确估计大变形场,并实现更高的配准精度和更快的配准速度。对比实验也证明了算法的有效性和泛化能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验