Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.
School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 2151213, P. R. China.
J Am Chem Soc. 2023 Jul 5;145(26):14298-14306. doi: 10.1021/jacs.3c02739. Epub 2023 Jun 22.
Colloidal chemistry holds promise to prepare uniform and size-controllable pre-catalysts; however, it remains a challenge to unveil the atomic-level transition from pre-catalysts to active catalytic surfaces under the reaction conditions to enable the mechanistic design of catalysts. Here, we report an ambient-pressure X-ray photoelectron spectroscopy study, coupled with in situ environmental transmission electron microscopy, infrared spectroscopy, and theoretical calculations, to elucidate the surface catalytic sites of colloidal Ni nanoparticles for CO hydrogenation. We show that Ni nanoparticles with phosphine ligands exhibit a distinct surface evolution compared with amine-capped ones, owing to the diffusion of P under oxidative (air) or reductive (CO + H) gaseous environments at elevated temperatures. The resulting NiP surface leads to a substantially improved selectivity for CO production, in contrast to the metallic Ni, which favors CH. The further elimination of surface metallic Ni sites by designing multi-step P incorporation achieves unit selectivity of CO in high-rate CO hydrogenation.
胶体化学有望制备均匀且尺寸可控的预催化剂;然而,揭示反应条件下预催化剂向活性催化表面的原子级转变,以实现催化剂的机理设计仍然是一个挑战。在这里,我们报告了一项常压 X 射线光电子能谱研究,结合原位环境透射电子显微镜、红外光谱和理论计算,阐明了胶体 Ni 纳米颗粒用于 CO 加氢的表面催化位。我们表明,膦配体的 Ni 纳米颗粒与胺封端的 Ni 纳米颗粒相比,表现出明显不同的表面演化,这是由于在高温下氧化(空气)或还原(CO+H)气体环境中 P 的扩散。由此产生的 NiP 表面导致 CO 生成的选择性大大提高,而金属 Ni 则有利于 CH。通过设计多步 P 掺入进一步消除表面金属 Ni 位,在高反应速率 CO 加氢中实现 CO 的单元选择性。