Suppr超能文献

一种基于支持向量回归模型的消费者情感分析系统。

A consumer emotion analysis system based on support vector regression model.

作者信息

Huo Mingkui, Li Jing

机构信息

Changchun University of Science and Technology, School of Economics and Management, Changchun, Jilin, China.

出版信息

PeerJ Comput Sci. 2023 May 9;9:e1381. doi: 10.7717/peerj-cs.1381. eCollection 2023.

Abstract

The effective means to stimulate economic growth is to enhance consumers' consumption capacity. Because many consumers have different consumption habits, they will pay different attention to products. Even the same consumer will have different shopping experiences when buying the same product at different times. By mining the online comments of consumers on the online fitness platform, we can find the characteristics of fitness projects that consumers care about. Analyzing consumers' emotional tendencies towards the characteristics of fitness programs will help online fitness platforms adjust the quality and service direction of fitness programs in a timely manner. At the same time, it can also provide purchase advice and suggestions for other consumers. Based on this goal, this study uses an optimized support vector regression (SVR) model to build a consumer sentiment analysis system, so as to predict the consumer's willingness to pay. The optimized SVR model uses the region convolution neural network (RCNN) to extract features from the dataset, and uses feature data to train the SVR model. The experimental results show that the SVR model optimized by RCNN is more accurate. The improvement of the accuracy of consumer sentiment analysis can accurately help businesses promote and publicize, and increase sales. On the other hand, the increase in the accuracy of emotion analysis can also help users quickly locate their favorite fitness projects, saving browsing time. To sum up, the emotional analysis system for consumers in this paper has good practical value.

摘要

刺激经济增长的有效手段是提高消费者的消费能力。由于许多消费者有不同的消费习惯,他们对产品的关注也会不同。即使是同一个消费者,在不同时间购买同一产品时也会有不同的购物体验。通过挖掘消费者在在线健身平台上的评论,我们可以找出消费者关心的健身项目的特点。分析消费者对健身项目特点的情感倾向,将有助于在线健身平台及时调整健身项目的质量和服务方向。同时,它还可以为其他消费者提供购买建议。基于这一目标,本研究使用优化的支持向量回归(SVR)模型构建消费者情感分析系统,以预测消费者的支付意愿。优化后的SVR模型使用区域卷积神经网络(RCNN)从数据集中提取特征,并使用特征数据训练SVR模型。实验结果表明,经RCNN优化的SVR模型更准确。消费者情感分析准确性的提高可以准确地帮助企业进行推广和宣传,并增加销售额。另一方面,情感分析准确性的提高也可以帮助用户快速找到他们喜欢的健身项目,节省浏览时间。综上所述,本文的消费者情感分析系统具有良好的实用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验